ドキュメンテーション

最新のリリースでは、このページがまだ翻訳されていません。 このページの最新版は英語でご覧になれます。

次元削減と特徴抽出

PCA、因子分析、特徴選択、特徴抽出など

"特徴変換" 手法では、データを新しい特徴量に変換することによりデータの次元を減らします。"特徴選択" 手法は、カテゴリカル変数がデータに含まれている場合など、変数を変換できない場合に適しています。特に最小二乗近似に適している特徴選択手法については、ステップワイズ回帰を参照してください。

関数

すべて展開する

fscnca分類に近傍成分分析を使用する特徴選択
fsrnca回帰に近傍成分分析を使用する特徴選択
sequentialfs逐次特徴選択
relieffReliefF または RReliefF アルゴリズムを使用した予測子の重要度のランク付け
rica再構成 ICA の使用による特徴抽出
sparsefiltスパース フィルターの使用による特徴抽出
transform抽出された特徴量への予測子の変換
tsnet 分布型確率的近傍埋め込み
barttestバートレットの検定
canoncorr正準相関
pca生データの主成分分析
pcacov共分散行列の主成分分析
pcares主成分分析の残差
ppca確率的主成分分析
factoran因子分析
rotatefactors因子負荷量の回転
nnmf非負値行列因子分解
cmdscale従来型の多次元尺度構成法
mahalマハラノビス距離
mdscale非従来型の多次元尺度構成法
pdist観測値ペア間のペアワイズ距離
squareform距離行列の形式
procrustesプロクラステス解析

クラス

FeatureSelectionNCAClassification近傍成分分析 (NCA) を使用する分類用の特徴選択
FeatureSelectionNCARegression近傍成分分析 (NCA) を使用する回帰用の特徴選択

オブジェクト

ReconstructionICA再構成 ICA による特徴抽出
SparseFilteringスパース フィルターによる特徴抽出

トピック

特徴選択

特徴選択

逐次特徴選択などの特徴選択アルゴリズムについて学びます。

近傍成分分析 (NCA) 特徴選択

近傍成分分析 (NCA) は、特徴量を選択するためのノンパラメトリックな組み込みの手法であり、回帰および分類アルゴリズムの予測精度を最大化するという目的があります。

特徴抽出

特徴抽出

特徴抽出は、高レベルの特徴をデータから抽出する一連の方法です。

特徴抽出のワークフロー

この例では、イメージ データからの特徴抽出を行う完全なワークフローを示します。

混合信号の抽出

この例では、rica を使用して混合オーディオ信号を分離する方法を示します。

t-SNE 多次元可視化

t-SNE

t-SNE は、元のデータの一部の特徴量を保持したまま 2 または 3 次元への非線形削減を行うことにより高次元データを可視化する方法です。

t-SNE の使用による高次元データの可視化

この例では、高次元データの有用な低次元埋め込みを t-SNE で作成する方法を示します。

tsne の設定

この例では、さまざまな tsne の設定の影響を示します。

t-SNE の出力関数

出力関数の説明と t-SNE の例です。

PCA と正準相関

主成分分析 (PCA)

主成分分析では、相関関係がある複数の変数を元の変数の線形結合である新しい一連の変数に置き換えることにより、データの次元を削減します。

PCA の使用による米国の都市における生活満足度の分析

重み付き主成分分析を実行し、結果を解釈します。

因子分析

因子分析

因子分析は、多変量データにモデルをあてはめることにより、少数の観測されない (潜在的な) 因子に対する測定された変数の相互依存を推定する方法です。

因子分析の使用による株価の分析

因子分析を使用して、同じ部門の会社では株価が週単位で同じように変化しているかどうかを調べます。

試験の成績に対する因子分析の実行

この例では、Statistics and Machine Learning Toolbox™ を使用してクラスター分析を実行する方法を示します。

非負値行列因子分解

非負値行列因子分解

"非負値行列因子分解" ("NMF") は、特徴空間の低ランク近似に基づく次元削減手法です。

非負値行列因子分解の実行

乗法アルゴリズムおよび交互最小二乗アルゴリズムを使用して非負値行列因子分解を実行します。

多次元尺度構成法

多次元尺度構成法

多次元尺度構成法では、多くの種類の距離または非類似度の尺度について点と点の近さを可視化し、データを低次元で表現することができます。

古典的多次元尺度構成法

cmdscale を使用して従来型の (計量) 多次元尺度構成法 (別名「主座標分析」) を実施します。

非空間的距離に適用した古典的な多次元尺度構成法

この例では、Statistics and Machine Learning Toolbox™ の関数 cmdscale を使用して古典的な多次元尺度構成法 (MDS) を実行する方法を示します。

非従来型の多次元尺度構成法

この例では、古典的でない多次元尺度構成法 (MDS) を使用してデータの相違性を可視化する方法を示します。

非従来型および非計量多次元尺度構成法

mdscale を使用して非従来型の多次元尺度構成法を実行します。

プロクラステス解析

プロクラステス解析

プロクラステス解析では、最良の形状維持ユークリッド変換を使用して、比較したランドマーク データ間の位置の違いを最小化します。

プロクラステス解析の使用による手書き形状の比較

プロクラステス解析を使用して 2 つの手書きの数字を比較します。

注目の例