異常検出
Statistics and Machine Learning Toolbox™ には、ラベル付けされていない多変量の標本データ向けの異常検出機能がいくつか用意されています。異常検出機能では、モデルに学習させるかパラメーターを学習することで外れ値 (学習データの異常) を検出します。新規性の検出 (汚染されていない学習データで新規のデータの異常を検出) では、汚染されていない学習データ (外れ値がないデータ) でモデルに学習させるかパラメーターを学習し、学習させたモデルまたは学習したパラメーターを使用して新規のデータの異常を検出します。詳細については、Unsupervised Anomaly Detectionを参照してください。
標準の点と異常のラベルが付いた学習データがある場合は、バイナリ分類モデルに学習させて、オブジェクト関数 resubPredict
と predict
をそれぞれ使用して学習データと新規のデータの異常を検出できます。サポートされる分類特徴のリストについては、分類を参照してください。
ツールボックスには、分類モデル、回帰モデル、またはクラスタリング モデルに学習させた後に適用できるモデル固有の異常検出機能も用意されています。詳細については、Model-Specific Anomaly Detectionを参照してください。
関数
オブジェクト
IsolationForest | 異常検出用の孤立森 |
ClassificationSVM | 1 クラスおよびバイナリ分類用のサポート ベクター マシン (SVM) |
トピック
- Unsupervised Anomaly Detection
Detect anomalies using isolation forest, one-class support vector machine (OCSVM), and Mahalanobis distance.
- Anomaly Detection with Isolation Forest
Detect anomalies by isolating anomalies from normal points using an isolation forest (ensemble of isolation trees).
- Model-Specific Anomaly Detection
After training a classification, regression, or clustering model, detect anomalies using a model-specific anomaly detection feature.
- Build Condition Model for Industrial Machinery and Manufacturing Processes
Train a binary classification model using Classification Learner App to detect anomalies in sensor data collected from an industrial manufacturing machine.
関連情報
- 3 軸振動データを使用した産業機械での異常検出 (Predictive Maintenance Toolbox)