Main Content

このページの内容は最新ではありません。最新版の英語を参照するには、ここをクリックします。

detectHarrisFeatures

Harris–Stephens アルゴリズムを使用したコーナーの検出

説明

points = detectHarrisFeatures(I) は、Harris-Stephens アルゴリズムを使用して 2 次元のグレースケールまたはバイナリの入力で検出されたコーナー特徴に関する情報が含まれる cornerPoints オブジェクト points を返します。

points = detectHarrisFeatures(I,Name,Value) は、1 つ以上の名前と値の引数で指定された追加オプションを使用します。

すべて折りたたむ

イメージを読み取ります。

I = checkerboard;

コーナーを検出します。

corners = detectHarrisFeatures(I);

結果を表示します。

imshow(I); hold on;
plot(corners.selectStrongest(50));

入力引数

すべて折りたたむ

入力イメージ。MN 列の 2 次元のグレースケールまたはバイナリのイメージとして指定します。入力イメージは、実数で非スパースでなければなりません。

データ型: single | double | int16 | uint8 | uint16 | logical

名前と値の引数

オプションの引数のペアを Name1=Value1,...,NameN=ValueN として指定します。ここで、Name は引数名で、Value は対応する値です。名前と値の引数は他の引数の後に指定しなければなりませんが、ペアの順序は重要ではありません。

R2021a より前では、コンマを使用して名前と値をそれぞれ区切り、Name を引用符で囲みます。

例: 'MinQuality','0.01','ROI',[50,150,100,200] は、指定された関心領域内にある最小許容品質 1% のコーナーを検出器で使用しなければならないことを指定します。この関心領域は、x=50y=150 にあります。ROI の幅は 100 ピクセルで、高さは 200 ピクセルです。

コーナーの最小許容品質。'MinQuality' と [0,1] の範囲のスカラー値で構成されるコンマ区切りのペアとして指定します。

コーナーの最小許容品質は、イメージの最大コーナー メトリクス値より小さな値を表します。誤ったコーナーを削除するには、この値を大きくします。

例: 'MinQuality', 0.01

データ型: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ガウス フィルターの次元。'FilterSize' と [3, min(size(I))] の範囲の奇数の整数値で構成されるコンマ区切りのペアとして指定します。

ガウス フィルターは、入力イメージの勾配を平滑化します。

関数は FilterSize 値を使用してフィルターの次元 FilterSize x FilterSize を計算します。また、ガウス フィルターの標準偏差を FilterSize/3 として定義します。

例: 'FilterSize', 5

データ型: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

コーナー検出のための四角形の領域。'ROI' と [x y width height] の形式のベクトルで構成されるコンマ区切りのペアとして指定します。最初の 2 つの整数値 [x y] は関心領域の左上隅の位置を表します。残りの 2 つの整数値は幅と高さを表します。

例: 'ROI', [50,150,100,200]

出力引数

すべて折りたたむ

コーナー ポイント オブジェクト。cornerPoints オブジェクトとして返されます。このオブジェクトには、2 次元入力イメージで検出された特徴点に関する情報が含まれます。

参照

[1] Harris, C., and M. Stephens, "A Combined Corner and Edge Detector," Proceedings of the 4th Alvey Vision Conference, August 1988, pp. 147-151.

拡張機能

バージョン履歴

R2013a で導入