predict
説明
例
回帰ニューラル ネットワークの使用によるテスト セットの応答の予測
学習済みの回帰ニューラル ネットワーク モデルを使用してテスト セットの応答値を予測します。
patients
データセットを読み込みます。データ セットから table を作成します。各行が 1 人の患者に対応し、各列が診断の変数に対応します。変数 Systolic
を応答変数として使用し、残りの変数を予測子として使用します。
load patients
tbl = table(Diastolic,Height,Smoker,Weight,Systolic);
非層化ホールドアウト分割を使用して、データを学習セット tblTrain
とテスト セット tblTest
に分割します。観測値の約 30% がテスト データ セット用に予約され、残りの観測値が学習データ セットに使用されます。
rng("default") % For reproducibility of the partition c = cvpartition(size(tbl,1),"Holdout",0.30); trainingIndices = training(c); testIndices = test(c); tblTrain = tbl(trainingIndices,:); tblTest = tbl(testIndices,:);
学習セットを使用して回帰ニューラル ネットワーク モデルに学習させます。tblTrain
の列 Systolic
を応答変数として指定します。数値予測子を標準化するための指定を行い、反復制限を 50 に設定します。既定では、ニューラル ネットワーク モデルには、最終全結合層を除き、出力数が 10 の全結合層が 1 つあります。
Mdl = fitrnet(tblTrain,"Systolic", ... "Standardize",true,"IterationLimit",50);
テスト セットの患者の収縮期血圧レベルを予測します。
predictedY = predict(Mdl,tblTest);
基準線を示した散布図を使用して結果を可視化します。予測値を縦軸に、実際の応答値を横軸に沿ってプロットします。基準線上にある点は予測が正しいことを示します。
plot(tblTest.Systolic,predictedY,".") hold on plot(tblTest.Systolic,tblTest.Systolic) hold off xlabel("True Systolic Blood Pressure Levels") ylabel("Predicted Systolic Blood Pressure Levels")
多くの点が基準線から離れた位置にあるため、サイズ 10 の全結合層をもつ既定のニューラル ネットワーク モデルは、収縮期血圧レベルの最適な予測子ではないようです。
回帰ニューラル ネットワークに含める特徴量の選択
テスト セットの損失と予測を比較することにより、特徴選択を実行します。すべての予測子を使用して学習させた回帰ニューラル ネットワーク モデルのテスト セット メトリクスを予測子のサブセットのみを使用して学習させたモデルのテスト セット メトリクスと比較します。
標本ファイル fisheriris.csv
を読み込みます。これには、アヤメについてのがく片の長さ、がく片の幅、花弁の長さ、花弁の幅、種の種類などのデータが格納されています。ファイルを table に読み込みます。
fishertable = readtable('fisheriris.csv');
非層化ホールドアウト分割を使用して、データを学習セット trainTbl
とテスト セット testTbl
に分割します。観測値の約 30% がテスト データ セット用に予約され、残りの観測値が学習データ セットに使用されます。
rng("default") c = cvpartition(size(fishertable,1),"Holdout",0.3); trainTbl = fishertable(training(c),:); testTbl = fishertable(test(c),:);
学習セット内のすべての予測子を使用して 1 つの回帰ニューラル ネットワーク モデルに学習させ、PetalWidth
を除くすべての予測子を使用してもう 1 つのモデルに学習させます。両方のモデルについて、PetalLength
を応答変数として指定し、予測子を標準化します。
allMdl = fitrnet(trainTbl,"PetalLength","Standardize",true); subsetMdl = fitrnet(trainTbl,"PetalLength ~ SepalLength + SepalWidth + Species", ... "Standardize",true);
2 つのモデルのテスト セットの平均二乗誤差 (MSE) を比較します。MSE の値が小さいほど、パフォーマンスが優れていることを示します。
allMSE = loss(allMdl,testTbl)
allMSE = 0.0856
subsetMSE = loss(subsetMdl,testTbl)
subsetMSE = 0.0881
各モデルについて、テスト セットの予測される花弁の長さと実際の花弁の長さを比較します。予測される花弁の長さを縦軸に、実際の花弁の長さを横軸に沿ってプロットします。基準線上にある点は予測が正しいことを示します。
tiledlayout(2,1) % Top axes ax1 = nexttile; allPredictedY = predict(allMdl,testTbl); plot(ax1,testTbl.PetalLength,allPredictedY,".") hold on plot(ax1,testTbl.PetalLength,testTbl.PetalLength) hold off xlabel(ax1,"True Petal Length") ylabel(ax1,"Predicted Petal Length") title(ax1,"All Predictors") % Bottom axes ax2 = nexttile; subsetPredictedY = predict(subsetMdl,testTbl); plot(ax2,testTbl.PetalLength,subsetPredictedY,".") hold on plot(ax2,testTbl.PetalLength,testTbl.PetalLength) hold off xlabel(ax2,"True Petal Length") ylabel(ax2,"Predicted Petal Length") title(ax2,"Subset of Predictors")
予測が基準線の近くに分布しており、両方のモデルが適切に機能しているようなので、PetalWidth
を除くすべての予測子を使用して学習させたモデルを使用することを検討します。
回帰ニューラル ネットワーク モデルの層の構造を使用した予測
単一の観測値の応答値を予測するために回帰ニューラル ネットワーク モデルの層がどのように連携するかを調べます。
標本ファイル fisheriris.csv
を読み込みます。これには、アヤメについてのがく片の長さ、がく片の幅、花弁の長さ、花弁の幅、種の種類などのデータが格納されています。ファイルを table に読み込み、table の最初の数行を表示します。
fishertable = readtable('fisheriris.csv');
head(fishertable)
SepalLength SepalWidth PetalLength PetalWidth Species ___________ __________ ___________ __________ __________ 5.1 3.5 1.4 0.2 {'setosa'} 4.9 3 1.4 0.2 {'setosa'} 4.7 3.2 1.3 0.2 {'setosa'} 4.6 3.1 1.5 0.2 {'setosa'} 5 3.6 1.4 0.2 {'setosa'} 5.4 3.9 1.7 0.4 {'setosa'} 4.6 3.4 1.4 0.3 {'setosa'} 5 3.4 1.5 0.2 {'setosa'}
データ セットを使用して回帰ニューラル ネットワーク モデルに学習させます。変数 PetalLength
を応答として指定し、他の数値変数を予測子として使用します。
Mdl = fitrnet(fishertable,"PetalLength ~ SepalLength + SepalWidth + PetalWidth");
データ セットから 15 番目の観測値を選択します。ニューラル ネットワークの層が観測値をどのように扱い、予測応答値 newPointResponse
をどのように返すかを調べます。
newPoint = Mdl.X{15,:}
newPoint = 1×3
5.8000 4.0000 0.2000
firstFCStep = (Mdl.LayerWeights{1})*newPoint' + Mdl.LayerBiases{1}; reluStep = max(firstFCStep,0); finalFCStep = (Mdl.LayerWeights{end})*reluStep + Mdl.LayerBiases{end}; newPointResponse = finalFCStep
newPointResponse = 1.6716
オブジェクト関数 predict
で返される予測と一致することを確認します。
predictedY = predict(Mdl,newPoint)
predictedY = 1.6716
isequal(newPointResponse,predictedY)
ans = logical
1
2 つの結果は一致しています。
入力引数
Mdl
— 学習させた回帰ニューラル ネットワーク
RegressionNeuralNetwork
モデル オブジェクト | CompactRegressionNeuralNetwork
モデル オブジェクト
学習させた回帰ニューラル ネットワーク。fitrnet
によって返される RegressionNeuralNetwork
モデル オブジェクト、または compact
によって返される CompactRegressionNeuralNetwork
モデル オブジェクトとして指定します。
X
— 応答の生成に使用する予測子データ。
数値行列 | テーブル
応答の生成に使用する予測子データ。数値行列またはテーブルを指定します。
既定では、X
の各行は 1 つの観測値に対応し、各列は 1 つの変数に対応します。
数値行列の場合
X
の列に含まれている変数の順序は、Mdl
に学習させた予測子変数の順序と同じでなければなりません。テーブル (たとえば
Tbl
) を使用してMdl
に学習をさせる場合、Tbl
に含まれている予測子変数が数値のみであれば、X
を数値行列にすることができます。学習時にTbl
内の数値予測子をカテゴリカルとして扱うには、fitrnet
の名前と値の引数CategoricalPredictors
を使用してカテゴリカル予測子を指定します。Tbl
に種類の異なる予測子変数 (数値および categorical データ型など) が混在し、X
が数値行列である場合、predict
でエラーがスローされます。
テーブルの場合
predict
は、文字ベクトルの cell 配列ではない cell 配列や複数列の変数をサポートしません。テーブル (たとえば
Tbl
) を使用してMdl
に学習をさせた場合、X
内のすべての予測子変数は変数名およびデータ型が、Mdl
に学習させた (Mdl.PredictorNames
に格納されている) 変数と同じでなければなりません。ただし、X
の列の順序がTbl
の列の順序に対応する必要はありません。また、Tbl
とX
に追加の変数 (応答変数や観測値の重みなど) を含めることができますが、predict
はこれらを無視します。数値行列を使用して
Mdl
に学習をさせる場合、Mdl.PredictorNames
内の予測子名とX
内の対応する予測子変数名が同じでなければなりません。学習時に予測子の名前を指定するには、fitrnet
の名前と値の引数PredictorNames
を使用します。X
内の予測子変数はすべて数値ベクトルでなければなりません。X
に追加の変数 (応答変数や観測値の重みなど) を含めることができますが、predict
はこれらを無視します。
Mdl
に学習させるときに fitrnet
で "Standardize",true
を設定した場合、予測子データの数値列が対応する平均および標準偏差を使用して標準化されます。
メモ
観測値が列に対応するように予測子行列を配置して "ObservationsIn","columns"
を指定すると、計算時間が大幅に短縮される可能性があります。table の予測子データに対して "ObservationsIn","columns"
を指定することはできません。
データ型: single
| double
| table
名前と値の引数
オプションの引数のペアを Name1=Value1,...,NameN=ValueN
として指定します。ここで Name
は引数名、Value
は対応する値です。名前と値の引数は他の引数の後ろにする必要がありますが、ペアの順序は関係ありません。
R2021a より前では、名前と値をそれぞれコンマを使って区切り、Name
を引用符で囲みます。
例: predict(Mdl,X,"ObservationsIn","columns")
は、予測子データの列が観測値に対応することを示します。
ObservationsIn
— 予測子データにおける観測値の次元
"rows"
(既定値) | "columns"
予測子データにおける観測値の次元。"rows"
または "columns"
として指定します。
メモ
観測値が列に対応するように予測子行列を配置して "ObservationsIn","columns"
を指定すると、計算時間が大幅に短縮される可能性があります。table の予測子データに対して "ObservationsIn","columns"
を指定することはできません。
データ型: char
| string
PredictionForMissingValue
— 予測子に欠損値がある観測値に使用する予測した応答値
"median"
(既定値) | "mean"
| 数値スカラー
R2023b 以降
予測子に欠損値がある観測値に使用する予測した応答値。"median"
、"mean"
、または数値スカラーとして指定します。
値 | 説明 |
---|---|
"median" | predict は、予測子に欠損値がある観測値について予測した応答値として、学習データ内の観測された応答値の中央値を使用します。 |
"mean" | predict は、予測子に欠損値がある観測値について予測した応答値として、学習データ内の観測された応答値の平均値を使用します。 |
数値スカラー | predict は、予測子に欠損値がある観測値について予測した応答値として、この値を使用します。 |
例: "PredictionForMissingValue","mean"
例: "PredictionForMissingValue",NaN
データ型: single
| double
| char
| string
代替機能
Simulink ブロック
Simulink® にニューラル ネットワーク回帰モデルの予測を統合するには、Statistics and Machine Learning Toolbox™ ライブラリにある RegressionNeuralNetwork Predict ブロックを使用するか、MATLAB® Function ブロックを関数 predict
と共に使用します。例については、RegressionNeuralNetwork Predict ブロックの使用による応答の予測とMATLAB Function ブロックの使用によるクラス ラベルの予測を参照してください。
使用するアプローチを判断する際は、以下を考慮してください。
Statistics and Machine Learning Toolbox ライブラリ ブロックを使用する場合、固定小数点ツール (Fixed-Point Designer)を使用して浮動小数点モデルを固定小数点に変換できます。
MATLAB Function ブロックを関数
predict
と共に使用する場合は、可変サイズの配列に対するサポートを有効にしなければなりません。MATLAB Function ブロックを使用する場合、予測の前処理や後処理のために、同じ MATLAB Function ブロック内で MATLAB 関数を使用することができます。
拡張機能
C/C++ コード生成
MATLAB® Coder™ を使用して C および C++ コードを生成します。
使用上の注意事項および制限事項:
saveLearnerForCoder
、loadLearnerForCoder
およびcodegen
(MATLAB Coder) を使用して、関数predict
のコードを生成します。saveLearnerForCoder
を使用して、学習済みモデルを保存します。loadLearnerForCoder
を使用して保存済みモデルを読み込んで関数predict
を呼び出す、エントリポイント関数を定義します。次に、codegen
を使用して、エントリポイント関数のコードを生成します。predict
用の単精度 C/C++ コードを生成するには、関数loadLearnerForCoder
を呼び出すときに名前と値の引数"DataType","single"
を指定します。次の表は、
predict
の引数に関する注意です。この表に含まれていない引数は、完全にサポートされています。引数 注意と制限 Mdl
モデル オブジェクトの使用上の注意および制限については、
CompactRegressionNeuralNetwork
オブジェクトのコード生成を参照してください。X
X
は、単精度または倍精度の行列か、数値変数、カテゴリカル変数、またはその両方を含むテーブルでなければなりません。X
の行数、または観測値の数は可変サイズにすることができますが、X
の列数は固定でなければなりません。X
を table として指定する場合、モデルは table を使用して学習させたものでなければならず、かつ予測のためのエントリポイント関数で次を行う必要があります。データを配列として受け入れる。
データ入力の引数から table を作成し、その table 内で変数名を指定する。
table を
predict
に渡す。
このテーブルのワークフローの例については、table のデータを分類するためのコードの生成を参照してください。コード生成におけるテーブルの使用の詳細については、table のコード生成 (MATLAB Coder)およびコード生成における table の制限事項 (MATLAB Coder)を参照してください。
名前と値の引数 名前と値の引数に含まれる名前はコンパイル時の定数でなければなりません。
ObservationsIn
の値はコンパイル時の定数でなければなりません。たとえば、生成されたコードで"ObservationsIn","columns"
を使用するには、{coder.Constant("ObservationsIn"),coder.Constant("columns")}
をcodegen
(MATLAB Coder) の-args
の値に含めます。PredictionForMissingValue
の値が非数値の場合、コンパイル時の定数でなければなりません。
詳細は、コード生成の紹介を参照してください。
バージョン履歴
R2021a で導入R2023b: 予測子に欠損値がある観測値に使用する予測した応答値の指定
R2023b 以降で損失を予測または計算する際、一部の回帰モデルでは、予測子に欠損値がある観測値について予測した応答値を指定できます。名前と値の引数 PredictionForMissingValue
を指定して、予測値として数値スカラー、学習セットの中央値、または学習セットの平均値を使用します。損失を計算するときに、予測子に欠損値がある観測値を省略するように指定することもできます。
次の表は、名前と値の引数 PredictionForMissingValue
をサポートするオブジェクト関数の一覧です。既定では、これらの関数は、予測子に欠損値がある観測値について予測した応答値として、学習セットの中央値を使用します。
モデル タイプ | モデル オブジェクト | オブジェクト関数 |
---|---|---|
ガウス過程回帰 (GPR) モデル | RegressionGP , CompactRegressionGP | loss , predict , resubLoss , resubPredict |
RegressionPartitionedGP | kfoldLoss , kfoldPredict | |
ガウス カーネル回帰モデル | RegressionKernel | loss , predict |
RegressionPartitionedKernel | kfoldLoss , kfoldPredict | |
線形回帰モデル | RegressionLinear | loss , predict |
RegressionPartitionedLinear | kfoldLoss , kfoldPredict | |
ニューラル ネットワーク回帰モデル | RegressionNeuralNetwork , CompactRegressionNeuralNetwork | loss , predict , resubLoss , resubPredict |
RegressionPartitionedNeuralNetwork | kfoldLoss , kfoldPredict | |
サポート ベクター マシン (SVM) 回帰モデル | RegressionSVM , CompactRegressionSVM | loss , predict , resubLoss , resubPredict |
RegressionPartitionedSVM | kfoldLoss , kfoldPredict |
以前のリリースでは、上記の回帰モデル関数 loss
および predict
は、予測子に欠損値がある観測値について予測した応答値として NaN
を使用していました。予測子に欠損値がある観測値は、予測と損失の再代入 ("resub") と交差検証 ("kfold") の計算で省略されていました。
MATLAB コマンド
次の MATLAB コマンドに対応するリンクがクリックされました。
コマンドを MATLAB コマンド ウィンドウに入力して実行してください。Web ブラウザーは MATLAB コマンドをサポートしていません。
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list:
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)