Main Content

RegressionNeuralNetwork Predict ブロックの使用による応答の予測

この例では、RegressionNeuralNetwork Predictブロックを Simulink® の応答予測に使用する方法を示します。このブロックは、観測値 (予測子データ) を受け入れて、学習済みのニューラル ネットワーク回帰モデルを使用することにより、その観測値の予測された応答を返します。

回帰モデルの学習

cereal データ セットを読み込みます。77 個の観測値に対する 6 個の特徴量を格納する数値行列として予測子 X を作成します。各シリアルのカロリーを格納する数値ベクトルとして応答 Y を作成します。

load cereal
X = [Carbo Cups Fat Fiber Protein Sugars];
Y = Calories;

非層化ホールドアウト分割を使用して、データを学習セットと検定セットに分割します。観測値の約 20% が検定データ セット用に予約され、残りの観測値が学習データ セットに使用されます。

rng("default") % For reproducibility of the partition
cv = cvpartition(length(Y),"Holdout",0.20);

学習インデックスと検定インデックスを抽出します。

trainingInds = training(cv);
testInds = test(cv);

学習データ セットと検定データ セットを指定します。

XTrain = X(trainingInds,:);
YTrain = Y(trainingInds);
XTest = X(testInds,:);
YTest = Y(testInds);

学習データ XTrain および YTrain を関数 fitrnet に渡して、ニューラル ネットワーク回帰モデルに学習させます。数値予測子を標準化するための指定を行います。

nnetMdl = fitrnet(XTrain,YTrain,"Standardize",true)
nnetMdl = 
  RegressionNeuralNetwork
             ResponseName: 'Y'
    CategoricalPredictors: []
        ResponseTransform: 'none'
          NumObservations: 62
               LayerSizes: 10
              Activations: 'relu'
    OutputLayerActivation: 'none'
                   Solver: 'LBFGS'
          ConvergenceInfo: [1x1 struct]
          TrainingHistory: [667x7 table]


  Properties, Methods

nnetMdlRegressionNeuralNetwork モデルです。ドット表記を使用して nnetMdl のプロパティにアクセスできます。たとえば、nnetMdl.TrainingHistory と指定すると、ニューラル ネットワーク モデルの学習履歴についての詳細情報を取得できます。

Simulink モデルの作成

この例では、RegressionNeuralNetwork Predictブロックを含む Simulink モデル slexRegressionNeuralNetworkPredictExample.slx が用意されています。この節の説明に従って、この Simulink モデルを開くことも、新しいモデルを作成することもできます。

指定されたモデルを開く

Simulink モデル slexRegressionNeuralNetworkPredictExample.slx を開きます。

SimMdlName = 'slexRegressionNeuralNetworkPredictExample'; 
open_system(SimMdlName)

slexRegressionNeuralNetworkPredictExample のコールバック関数 PreLoadFcn には、標本データの読み込み、ニューラル ネットワーク モデルの学習、および Simulink モデルの入力信号の作成を行うコードが含まれています。Simulink モデルを開くと、Simulink モデルを読み込む前に、ソフトウェアが PreLoadFcn のコードを実行します。コールバック関数を表示するには、[モデル化] タブの [設定] セクションで、[モデル設定] をクリックし、[モデル プロパティ] を選択します。次に、[コールバック] タブで、[モデルのコールバック] ペインのコールバック関数 PreLoadFcn を選択します。

新規モデルの作成

指定されたモデルを開く代わりに新規モデルを作成できます。新しい Simulink モデルを作成するには、[空のモデル] テンプレートを開き、RegressionNeuralNetwork Predict ブロックを追加します。Inport ブロックと Outport ブロックを追加して、それらを RegressionNeuralNetwork Predict ブロックに接続します。

RegressionNeuralNetwork Predict ブロックをダブルクリックして、[ブロック パラメーター] ダイアログ ボックスを開きます。学習済みのニューラル ネットワーク モデルを含むワークスペース変数の名前を指定できます。既定の変数名は nnetMdl です。[更新] ボタンをクリックします。ダイアログ ボックスの [Trained Machine Learning Model] セクションに、モデル nnetMdl の学習に使用されるオプションが表示されます。

RegressionNeuralNetwork Predict ブロックには、6 個の予測子の値を含む観測値が必要です。Inport ブロックをダブルクリックし、[信号属性] タブで [端子の次元] を 6 に設定します。

Simulink モデルの構造体配列の形式で、入力信号を作成します。構造体配列には、次のフィールドが含まれていなければなりません。

  • time — 観測値がモデルに入力された時点。方向は予測子データ内の観測値に対応しなければなりません。この例の場合は time が列ベクトルでなければなりません。

  • signalsvalues フィールドと dimensions フィールドが含まれている、入力データを説明する 1 行 1 列の構造体配列。values は予測子データの行列、dimensions は予測子変数の個数です。

将来の予測用に適切な構造体配列を作成します。

cerealInput.time = (0:length(YTest)-1)';
cerealInput.signals(1).values = XTest;
cerealInput.signals(1).dimensions = size(XTest,2);

ワークスペースから信号データをインポートします。

  • [コンフィギュレーション パラメーター] ダイアログ ボックスを開く。[モデル化] タブで、[モデル設定] をクリック。

  • [データのインポート/エクスポート] ペインで [入力] チェック ボックスをオンにし、隣のテキスト ボックスに「cerealInput」と入力。

  • [ソルバー] ペインの [シミュレーション時間] で、[終了時間]cerealInput.time(end) に設定。[ソルバーの選択] で、[タイプ]Fixed-step に、[ソルバー]discrete (no continuous states) に設定。

詳細は、シミュレーションのための信号データの読み込み (Simulink)を参照してください。

モデルをシミュレーション

モデルをシミュレートします。

sim(SimMdlName);

Inport ブロックでは、観測値を検出すると、その観測値を RegressionNeuralNetwork Predict ブロックに配置します。シミュレーション データ インスペクター (Simulink)を使用して、Outport ブロックのログ データを表示できます。

参考

関連するトピック