MATLAB と Simulink を使用すると、複雑な組み込みシステムの性能や機能を強化する AI アルゴリズムの設計、シミュレーション、テスト、検証、展開が可能になります。
MATLAB と Simulink を使用した組み込み AI の展開
AI モデルを準備して、組み込み AI アプリケーションを CPU、GPU、FPGA などに展開するコードを自動生成する方法を紹介します。チュートリアル、例、ビデオを通じて、MATLAB と Simulink を使用した組み込み AI に関する実践的なアドバイスを得ることができます。
CPU やマイクロコントローラーへの展開
MATLAB Coder と Simulink Coder を使用して、学習済みの機械学習モデルやディープラーニング モデルから移植可能な最適化された C/C++ コードを生成します。
GPU への展開
デスクトップ、サーバー、組み込み GPU への展開のために、GPU Coder を使用して、学習済みのディープラーニング ネットワーク用に最適化された CUDA® コードを生成します。
FPGA と SoC への展開
Deep Learning HDL Toolbox で、FPGA や SoC 上でディープラーニング ネットワークのプロトタイプを作成して実装します。HDL Coder を使用して、独自のディープラーニング プロセッサ用 IP コアとビットストリームを生成します。
Deploy to NPUs
Generate optimized code for NPUs like Qualcomm Hexagon and Infineon PPU in AURIX TC4x.
AI モデルの圧縮
量子化、射影、枝刈りなどの手段でディープ ニューラル ネットワークを圧縮することで、メモリフットプリントを削減し、推論性能を高めます。
AI Verification
AI verification applies rigorous methods like the W-shaped process to ensure intended behaviors and prevent unintended ones.