Main Content

このページの内容は最新ではありません。最新版の英語を参照するには、ここをクリックします。

ClassificationKNN Predict

最近傍分類モデルを使用した観測値の分類

R2022b 以降

  • ClassificationKNN Predict Block Icon

ライブラリ:
Statistics and Machine Learning Toolbox / Classification

説明

ClassificationKNN Predict ブロックは、マルチクラス分類について、最近傍分類オブジェクト (ClassificationKNN) を使用して観測値を分類します。

オブジェクトを含むワークスペース変数の名前を指定することにより、学習済みの分類オブジェクトをブロックにインポートします。入力端子 x では観測値 (予測子データ) を受信し、出力端子 label では観測値の予測クラス ラベルを返します。オプションの出力端子 score は予測クラス スコアまたは事後確率を返します。オプションの出力端子 cost は予測分類コストを返します。

端子

入力

すべて展開する

予測子データ。1 つの観測値の行ベクトルまたは列ベクトルとして指定します。

x の変数の順序は、[学習済み機械学習モデルを選択] で指定されたモデルに学習させた予測子変数の順序と同じでなければなりません。

データ型: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | Boolean | fixed point

出力

すべて展開する

予測クラス ラベル。スカラーとして返されます。予測クラスは、予測分類コストを最小化するクラスです。詳細については、オブジェクト関数 predictアルゴリズムのセクションを参照してください。

データ型: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | Boolean | fixed point | enumerated

予測クラス スコアまたは事後確率。サイズが 1 行 k 列の行ベクトルとして返されます。ここで、k は最近傍モデル内のクラスの数です。分類スコア Score(i) は、x の観測値がクラス i に属する事後確率を表します。

クラスの順序を確認するには、[学習済み機械学習モデルを選択] で指定された最近傍モデルの ClassNames プロパティを使用します。

依存関係

この端子を有効にするには、[ブロック パラメーター] ダイアログ ボックスの [メイン] タブで [予測済みクラス スコア用の出力端子を追加] のチェック ボックスをオンにします。

データ型: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | Boolean | fixed point

予測分類コスト。サイズが 1 行 k 列の行ベクトルとして返されます。ここで、k は最近傍モデル内のクラスの数です。分類コスト Cost(i) は、x の観測値をクラス i に分類するコストを表します。

クラスの順序を確認するには、[学習済み機械学習モデルを選択] で指定された最近傍モデルの ClassNames プロパティを使用します。

依存関係

この端子を有効にするには、[ブロック パラメーター] ダイアログ ボックスの [メイン] タブで [予測される分類コストの出力端子を追加] のチェック ボックスをオンにします。

データ型: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | Boolean | fixed point

パラメーター

すべて展開する

メイン

ClassificationKNN オブジェクトを含むワークスペース変数の名前を指定します。

fitcknn を使用してモデルに学習させる場合、次の制限が適用されます。

  • 予測子データにカテゴリカル予測子 (logicalcategoricalcharstring、または cell) を含めることはできません。学習データをテーブルで渡す場合、予測子は数値 (double または single) でなければなりません。また、名前と値の引数 CategoricalPredictors は使用できません。カテゴリカル予測子をモデルに含めるには、モデルを当てはめる前に dummyvar を使用してカテゴリカル予測子を前処理します。

  • 名前と値の引数 ScoreTransform の値を "invlogit" や無名関数にすることはできません。

プログラムでの使用

ブロック パラメーター: TrainedLearner
型: ワークスペース変数
値: ClassificationKNN オブジェクト
既定の設定: 'knnMdl'

チェック ボックスをオンにすると、ClassificationKNN Predict ブロックに出力端子 score が追加されます。

プログラムでの使用

ブロック パラメーター: ShowOutputScore
型: 文字ベクトル
値: 'off' | 'on'
既定の設定: 'off'

チェック ボックスをオンにすると、ClassificationKNN Predict ブロックに出力端子 cost が追加されます。

プログラムでの使用

ブロック パラメーター: ShowOutputCost
型: 文字ベクトル
値: 'off' | 'on'
既定の設定: 'off'

データ型

固定小数点が使用可能なパラメーター

固定小数点演算の丸めモードを指定します。詳細は、丸め (Fixed-Point Designer)を参照してください。

ブロック パラメーターは常に、最も近い表現可能な値に丸められます。ブロック パラメーターの丸めを制御するには、マスク フィールドに MATLAB® の丸め関数を使用して式を入力します。

プログラムでの使用

ブロック パラメーター: RndMeth
型: 文字ベクトル
値: "Ceiling" | "Convergent" | "Floor" | "Nearest" | "Round" | "Simplest" | "Zero"
既定の設定: "Floor"

オーバーフローの際に飽和するか折り返すかを指定します。

アクション理由オーバーフローの際の影響

このチェック ボックスをオンにする (on)。

モデルにオーバーフローの可能性があり、生成されたコードで明示的な飽和保護が必要である。

オーバーフローの際は、データ型が表現できる最小値または最大値に飽和します。

データ型 int8 (8 ビット負号付き整数) が表現できる最大値は 127 です。この最大値よりも大きいブロック演算結果は、8 ビット整数のオーバーフローを引き起こします。チェック ボックスをオンにすると、ブロック出力は 127 で飽和します。同様に、ブロック出力は最小出力値の -128 で飽和します。

このチェック ボックスをオフにする (off)。

生成されたコードの効率を最適化したい。

ブロックが範囲外の信号を処理する方法を過剰指定したくない。詳細は、信号範囲のエラーのトラブルシューティング (Simulink)を参照してください。

オーバーフローの際は、データ型が表現できる適切な値で折り返します。

データ型 int8 (8 ビット負号付き整数) が表現できる最大値は 127 です。この最大値よりも大きいブロック演算結果は、8 ビット整数のオーバーフローを引き起こします。チェック ボックスをオフにすると、オーバーフローを引き起こす値が int8 として解釈され、意図しない結果になる可能性があります。たとえば、130 (バイナリでは 1000 0010) というブロック結果が int8 として表現されると、-126 になります。

プログラムでの使用

ブロック パラメーター: SaturateOnIntegerOverflow
型: 文字ベクトル
値: "off" | "on"
既定の設定: "off"

このパラメーターを選択して、ブロックに指定したデータ型を固定小数点ツールがオーバーライドしないようにします。詳細は、[出力データ型の設定をロックする] の使用 (Fixed-Point Designer)を参照してください。

プログラムでの使用

ブロック パラメーター: LockScale
型: 文字ベクトル
値: "off" | "on"
既定の設定: "off"
データ型

label 出力のデータ型を指定します。型は継承するか、列挙データ型として指定するか、Simulink.NumericType のようにデータ型オブジェクトとして表現できます。

サポートされるデータ型は、[学習済み機械学習モデルを選択] で指定されたモデルで使用されるラベルによって異なります。

  • モデルで数値ラベルまたは logical ラベルが使用される場合、サポートされるデータ型は [Inherit: Inherit via back propagation] (既定)、doublesinglehalfint8uint8int16uint16int32uint32int64uint64boolean、固定小数点およびデータ型オブジェクトです。

  • モデルで非数値ラベルが使用される場合、サポートされるデータ型は [Inherit: auto] (既定)、Enum: <class name> およびデータ型オブジェクトです。

継承オプションを選択すると、ソフトウェアは以下のように動作します。

  • Inherit: Inherit via back propagation (数値ラベルと logical ラベルの場合の既定値) — Simulink® は、データ型の伝播時にブロックの [ラベルのデータ型] を自動的に決定します (データ型の伝播 (Simulink)を参照)。この場合、ブロックは下流ブロックまたは信号オブジェクトのデータ型を使用します。

  • Inherit: auto (非数値ラベルの場合の既定値) — ブロックは自動定義された列挙データ型変数を使用します。たとえば、[学習済み機械学習モデルを選択] で指定されたワークスペース変数名が myMdl で、クラス ラベルが class 1 および class 2 であるとします。この場合、対応する label の値は myMdl_enumLabels.class_1 および myMdl_enumLabels.class_2 になります。ブロックは、関数 matlab.lang.makeValidName を使用して、クラス ラベルを有効な MATLAB 識別子に変換します。

データ型の詳細については、信号のデータ型の制御 (Simulink)を参照してください。

[データ型アシスタントを表示] ボタン をクリックすると、[データ型アシスタント] が表示されます。これは、データ型の属性を設定する際に役立ちます。詳細は、データ型アシスタントを利用したデータ型の指定 (Simulink)を参照してください。

プログラムでの使用

ブロック パラメーター: LabelDataTypeStr
: 文字ベクトル
: "Inherit: Inherit via back propagation" | "Inherit: auto" | "double" | "single" | "half" | "int8" | "uint8" | "int16" | "uint16" | "int32" | "uint32" | "int64" | "uint64" | "boolean" | "fixdt(1,16,0)" | "fixdt(1,16,2^0,0)" | "Enum: <class name>" | "<data type expression>"
既定の設定: "Inherit: Inherit via back propagation" (数値ラベルと logical ラベルの場合) | "Inherit: auto" (非数値ラベルの場合)

Simulink がチェックする label 出力範囲の下限値を指定します。

Simulink は以下を実行するために最小値を使用します。

メモ

[ラベルのデータ型、最小値] パラメーターが、label の実際の出力信号を飽和させたり、クリップしたりすることはありません。これを行うには、代わりに Saturation (Simulink) ブロックを使用してください。

依存関係

このパラメーターを指定できるのは、[学習済み機械学習モデルを選択] で指定されたモデルで数値ラベルが使用される場合だけです。

プログラムでの使用

ブロック パラメーター: LabelOutMin
: 文字ベクトル
: "[]" | スカラー
既定の設定: "[]"

Simulink がチェックする label 出力範囲の上限値を指定します。

Simulink は以下を実行するために最大値を使用します。

メモ

[ラベルのデータ型、最大値] パラメーターが、label の実際の出力信号を飽和させたり、クリップしたりすることはありません。これを行うには、代わりに Saturation (Simulink) ブロックを使用してください。

依存関係

このパラメーターを指定できるのは、[学習済み機械学習モデルを選択] で指定されたモデルで数値ラベルが使用される場合だけです。

プログラムでの使用

ブロック パラメーター: LabelOutMax
: 文字ベクトル
: "[]" | スカラー
既定の設定: "[]"

score 出力のデータ型を指定します。データ型は継承するか、直接指定するか、Simulink.NumericType のようにデータ型オブジェクトとして表現することができます。

[Inherit: auto] を選択すると、ブロックはデータ型を継承するルールを使用します。

データ型の詳細については、信号のデータ型の制御 (Simulink)を参照してください。

[データ型アシスタントを表示] ボタン をクリックすると、[データ型アシスタント] が表示されます。これは、データ型の属性を設定する際に役立ちます。詳細は、データ型アシスタントを利用したデータ型の指定 (Simulink)を参照してください。

プログラムでの使用

ブロック パラメーター: ScoreDataTypeStr
: 文字ベクトル
: "Inherit: auto" | "double" | "single" | "half" | "int8" | "uint8" | "int16" | "uint16" | "int32" | "uint32" | "int64" | "uint64" | "boolean" | "fixdt(1,16,0)" | "fixdt(1,16,2^0,0)" | "<data type expression>"
既定の設定: "Inherit: auto"

Simulink がチェックする score 出力範囲の下限値を指定します。

Simulink は以下を実行するために最小値を使用します。

メモ

[スコアのデータ型、最小値] パラメーターが、score の実際の出力を飽和させたり、クリップしたりすることはありません。これを行うには、代わりに Saturation (Simulink) ブロックを使用してください。

プログラムでの使用

ブロック パラメーター: ScoreOutMin
: 文字ベクトル
: "[]" | スカラー
既定の設定: "[]"

Simulink がチェックする score 出力範囲の上限値を指定します。

Simulink は以下を実行するために最大値を使用します。

メモ

[スコアのデータ型、最大値] パラメーターが、score の実際の出力を飽和させたり、クリップしたりすることはありません。これを行うには、代わりに Saturation (Simulink) ブロックを使用してください。

プログラムでの使用

ブロック パラメーター: ScoreOutMax
: 文字ベクトル
: "[]" | スカラー
既定の設定: "[]"

内部の未変換スコアのデータ型を指定します。データ型は継承するか、直接指定するか、Simulink.NumericType のようにデータ型オブジェクトとして表現することができます。

[Inherit: auto] を選択すると、ブロックはデータ型を継承するルールを使用します。

データ型の詳細については、信号のデータ型の制御 (Simulink)を参照してください。

[データ型アシスタントを表示] ボタン をクリックすると、[データ型アシスタント] が表示されます。これは、データ型の属性を設定する際に役立ちます。詳細は、データ型アシスタントを利用したデータ型の指定 (Simulink)を参照してください。

依存関係

このパラメーターを指定できるのは、[学習済み機械学習モデルを選択] で指定されたモデルで "none" (既定の設定で、"identity" と同じ) 以外のスコア変換が使用される場合だけです。

  • モデルでスコア変換が使用されない ("none" または "identity") 場合は、[スコアのデータ型] を使用してスコアのデータ型を指定できます。

  • モデルで "none" または "identity" 以外のスコア変換が使用される場合は、このパラメーターを使用して未変換の生スコアのデータ型を指定できます。変換されたスコアのデータ型を指定するには、[スコアのデータ型] を使用します。

スコア変換オプションを変更するには、学習時に名前と値の引数 ScoreTransform を指定するか、学習後に ScoreTransform プロパティを変更します。

プログラムでの使用

ブロック パラメーター: RawScoreDataTypeStr
: 文字ベクトル
: "Inherit: auto" | "double" | "single" | "half" | "int8" | "uint8" | "int16" | "uint16" | "int32" | "uint32" | "int64" | "uint64" | "boolean" | "fixdt(1,16,0)" | "fixdt(1,16,2^0,0)" | "<data type expression>"
既定の設定: "Inherit: auto"

Simulink がチェックする未変換スコア範囲の下限値を指定します。

Simulink は以下を実行するために最小値を使用します。

メモ

[生スコアのデータ型、最小値] パラメーターが、未変換スコアの実際の信号を飽和させたり、クリップしたりすることはありません。

プログラムでの使用

ブロック パラメーター: RawScoreOutMin
: 文字ベクトル
: "[]" | スカラー
既定の設定: "[]"

Simulink がチェックする未変換スコア範囲の上限値を指定します。

Simulink は以下を実行するために最大値を使用します。

メモ

[生スコアのデータ型、最大値] パラメーターが、未変換スコアの実際の信号を飽和させたり、クリップしたりすることはありません。

プログラムでの使用

ブロック パラメーター: RawScoreOutMax
: 文字ベクトル
: "[]" | スカラー
既定の設定: "[]"

cost 出力のデータ型を指定します。データ型は継承するか、直接指定するか、Simulink.NumericType のようにデータ型オブジェクトとして表現することができます。

[Inherit: auto] を選択すると、ブロックはデータ型を継承するルールを使用します。

データ型の詳細については、信号のデータ型の制御 (Simulink)を参照してください。

[データ型アシスタントを表示] ボタン をクリックすると、[データ型アシスタント] が表示されます。これは、データ型の属性を設定する際に役立ちます。詳細は、データ型アシスタントを利用したデータ型の指定 (Simulink)を参照してください。

プログラムでの使用

ブロック パラメーター: CostDataTypeStr
: 文字ベクトル
: "Inherit: auto" | "double" | "single" | "half" | "int8" | "uint8" | "int16" | "uint16" | "int32" | "uint32" | "int64" | "uint64" | "boolean" | "fixdt(1,16,0)" | "fixdt(1,16,2^0,0)" | "<data type expression>"
既定の設定: "Inherit: auto"

Simulink がチェックする cost 出力範囲の下限値を指定します。

Simulink は以下を実行するために最小値を使用します。

メモ

[推定コストのデータ型、最小値] パラメーターが、cost の実際の信号を飽和させたり、クリップしたりすることはありません。これを行うには、代わりに Saturation (Simulink) ブロックを使用してください。

プログラムでの使用

ブロック パラメーター: CostOutMin
: 文字ベクトル
: "[]" | スカラー
既定の設定: "[]"

Simulink がチェックする cost 出力範囲の上限値を指定します。

Simulink は以下を実行するために最大値を使用します。

メモ

[推定コストのデータ型、最大値] パラメーターが、cost の実際の信号を飽和させたり、クリップしたりすることはありません。これを行うには、代わりに Saturation (Simulink) ブロックを使用してください。

プログラムでの使用

ブロック パラメーター: CostOutMax
: 文字ベクトル
: "[]" | スカラー
既定の設定: "[]"

距離計量のデータ型を指定します。データ型は継承するか、直接指定するか、Simulink.NumericType のようにデータ型オブジェクトとして表現することができます。

[Inherit: auto] を選択すると、ブロックはデータ型を継承するルールを使用します。

データ型の詳細については、信号のデータ型の制御 (Simulink)を参照してください。

[データ型アシスタントを表示] ボタン をクリックすると、[データ型アシスタント] が表示されます。これは、データ型の属性を設定する際に役立ちます。詳細は、データ型アシスタントを利用したデータ型の指定 (Simulink)を参照してください。

ヒント

[距離のデータ型] パラメーターは、最近傍探索法の距離計量のデータ型を指定します。詳細については、関数 fitcknn の名前と値の引数 Distance を参照してください。

プログラムでの使用

ブロック パラメーター: DistanceDataTypeStr
: 文字ベクトル
: 'Inherit: auto' | 'double' | 'single' | 'half' | 'int8' | 'uint8' | 'int16' | 'uint16' | 'int32' | 'uint32' | 'int64' | 'uint64' | 'boolean' | 'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | '<data type expression>'
既定の設定: 'Inherit: auto'

Simulink がチェックする距離計量の内部変数範囲の下限値を指定します。

Simulink は以下を実行するために最小値を使用します。

メモ

[距離のデータ型、最小値] パラメーターが、距離計量の実際の信号を飽和させたり、クリップしたりすることはありません。

プログラムでの使用

ブロック パラメーター: DistanceOutMin
: 文字ベクトル
: '[]' | スカラー
既定の設定: '[]'

Simulink がチェックする距離計量の内部変数範囲の上限値を指定します。

Simulink は以下を実行するために最大値を使用します。

メモ

[距離のデータ型、最小値] パラメーターが、距離計量の実際の信号を飽和させたり、クリップしたりすることはありません。

プログラムでの使用

ブロック パラメーター: DistanceOutMax
: 文字ベクトル
: '[]' | スカラー
既定の設定: '[]'

ブロックの特性

データ型

Boolean | double | enumerated | fixed point | half | integer | single

直達

yes

多次元信号

no

可変サイズの信号

no

ゼロクロッシング検出

no

代替機能

MATLAB Function ブロックを最近傍分類オブジェクト (ClassificationKNN) のオブジェクト関数 predict と共に使用できます。たとえば、MATLAB Function ブロックの使用によるクラス ラベルの予測を参照してください。

Statistics and Machine Learning Toolbox™ ライブラリ内の ClassificationKNN Predict ブロックを使用するかどうか、または MATLAB Function ブロックを関数 predict と共に使用するかどうかを判断する際には、以下を考慮してください。

  • Statistics and Machine Learning Toolbox ライブラリ ブロックを使用する場合、固定小数点ツール (Fixed-Point Designer)を使用して浮動小数点モデルを固定小数点に変換できます。

  • MATLAB Function ブロックを関数 predict と共に使用する場合は、可変サイズの配列に対するサポートを有効にしなければなりません。

  • MATLAB Function ブロックを使用する場合、予測の前処理や後処理のために、同じ MATLAB Function ブロック内で MATLAB 関数を使用することができます。

拡張機能

C/C++ コード生成
Simulink® Coder™ を使用して C および C++ コードを生成します。

固定小数点の変換
Fixed-Point Designer™ を使用して固定小数点システムの設計とシミュレーションを行います。

バージョン履歴

R2022b で導入