メインコンテンツ

可視化と解釈可能性

学習の進行状況のプロット、精度の評価、予測の説明、ネットワークによって学習された特徴の可視化

ネットワークの精度と損失の組み込みプロットを使用して進行状況を監視します。Grad-CAM、オクルージョン感度、LIME、Deep Dream などの可視化手法を使用して、学習済みネットワークを調査します。

深層学習の可視化手法

アプリ

ディープ ネットワーク デザイナー深層学習ネットワークの設計と可視化

オブジェクト

trainingProgressMonitor深層学習カスタム学習ループの学習進行状況の監視およびプロット (R2022b 以降)

関数

すべて展開する

analyzeNetwork深層学習ネットワーク アーキテクチャの解析
plotニューラル ネットワーク アーキテクチャのプロット
updateInfoUpdate information values for custom training loops (R2022b 以降)
recordMetricsカスタム学習ループのメトリクス値の記録 (R2022b 以降)
groupSubPlot学習プロットへのメトリクスのグループ化 (R2022b 以降)
yscaleSet training plot y-axis scale (linear or logarithmic) (R2024a 以降)
testnetTest deep learning neural network (R2024b 以降)
accuracyMetricDeep learning accuracy metric (R2023b 以降)
aucMetricDeep learning area under ROC curve (AUC) metric (R2023b 以降)
fScoreMetricDeep learning F-score metric (R2023b 以降)
precisionMetricDeep learning precision metric (R2023b 以降)
recallMetricDeep learning recall metric (R2023b 以降)
rmseMetricDeep learning root mean squared error metric (R2023b 以降)
mapeMetricDeep learning mean absolute percentage error metric (R2024b 以降)
rSquaredMetricDeep learning R2 metric (R2025a 以降)
predict推論用の深層学習ネットワーク出力の計算
minibatchpredictミニバッチ ニューラル ネットワーク予測 (R2024a 以降)
scores2label予測スコアからラベルへの変換 (R2024a 以降)
confusionchart分類問題用の混同行列チャートの作成
sortClasses混同行列チャートのクラスの並べ替え
rocmetricsReceiver operating characteristic (ROC) curve and performance metrics for binary and multiclass classifiers (R2022b 以降)
addMetricsCompute additional classification performance metrics (R2022b 以降)
aucArea under the ROC curve or area under the PR (precision-recall) curve (R2024b 以降)
averageCompute performance metrics for average receiver operating characteristic (ROC) curve in multiclass problem (R2022b 以降)
modelOperatingPointOperating point of rocmetrics object (R2024b 以降)
plotPlot receiver operating characteristic (ROC) curves and other performance curves (R2022b 以降)
imageLIMEExplain network predictions using LIME
occlusionSensitivityExplain network predictions by occluding the inputs
deepDreamImageDeep Dream を使用したネットワークの特徴の可視化
gradCAMGrad-CAM を使用したネットワーク予測の説明 (R2021a 以降)
driseExplain object detection network predictions using D-RISE (R2024a 以降)
deep.gpu.deterministicAlgorithmsSet determinism of deep learning operations on the GPU to get reproducible results (R2024b 以降)

プロパティ

ConfusionMatrixChart PropertiesConfusion matrix chart appearance and behavior
ROCCurve PropertiesReceiver operating characteristic (ROC) curve appearance and behavior (R2022b 以降)

トピック

学習の進行状況とパフォーマンス

解釈可能性

注目の例