金融工学
金融データの取り込みと解析、リスクと経済システムのモデルの開発、投資管理、および複雑な商品の価格付け
金融工学向け MATLAB® 製品を使用して、投資とリスクの管理、計量経済学、価格付けと評価、保険、およびアルゴリズム取引のための定量的アプリケーションを開発できます。わずか数行のコードを記述するだけで、以下を行うことができます。
過去と現在の市場データをグラフで表示する。
時系列データを解析し、予測モデルを作成する。
金利をモデル化し、感度解析を実行する。
ポートフォリオを最適化し、リスク アトリビューションを実行する。
パフォーマンスを最適化し、リスクを最小化するための定量モデルを開発する。
金融工学 向け製品
トピック
データベースへのアクセスと金融データ交換
- Connect to Database (Database Toolbox)
After configuring a driver and data source, connect to your database. - Communicating with Data Service Providers (Datafeed Toolbox)
Find the connection function for each supported data service provider.
金融および経済の時系列の解析とモデル化
- Analyze Time Series Data Using Econometric Modeler (Econometrics Toolbox)
Interactively visualize and analyze univariate or multivariate time series data. - Represent Time Series Models Using Econometrics Toolbox Objects (Econometrics Toolbox)
Learn how to represent time series models as model objects.
ポートフォリオの最適化とバックテスト
- Portfolio Optimization Examples Using Financial Toolbox (Financial Toolbox)
Follow a sequence of examples that highlight features of thePortfolio
(Financial Toolbox) object. Specifically, the examples use thePortfolio
(Financial Toolbox) object to show how to set up mean-variance portfolio optimization problems that focus on the two-fund theorem, the impact of transaction costs and turnover constraints, how to obtain portfolios that maximize the Sharpe ratio, and how to set up two popular hedge-fund strategies — dollar-neutral and 130-30 portfolios. - Backtest Investment Strategies Using Financial Toolbox (Financial Toolbox)
Perform backtesting of portfolio strategies using a backtesting framework. Backtesting is a useful tool to compare how investment strategies perform over historical or simulated market data. This example develops five different investment strategies and then compares their performance after running over a one-year period of historical stock data. The backtesting framework is implemented in two Financial Toolbox™ classes:backtestStrategy
(Financial Toolbox) andbacktestEngine
(Financial Toolbox). - Diversify ESG Portfolios (Financial Toolbox)
This example shows how to include qualitative factors for environmental, social, and corporate governance (ESG) in the portfolio selection process. The example extends the traditional mean-variance portfolio using aPortfolio
(Financial Toolbox) object to include the ESG metric. First, theestimateFrontier
(Financial Toolbox) function computes the mean-variance efficient frontier for different ESG levels. Then, the example illustrates how to combine the ESG performance measure with portfolio diversification techniques. Specifically, it introduces hybrid models that use the Herfindahl-Hirshman (HH) index and the most diversified portfolio (MDP) approach using theestimateCustomObjectivePortfolio
(Financial Toolbox) function. Finally, thebacktestEngine
(Financial Toolbox) framework compares the returns and behavior of the different ESG strategies. - Create Hierarchical Risk Parity Portfolio (Financial Toolbox)
This example shows how to compute a hierarchical risk parity (HRP) portfolio. You can use HRP as a technique for portfolio diversification where the assets are divided and weighted according to a hierarchical tree structure. The weights of the assets within a cluster and between clusters can be assigned in many ways. A few ideas of the ways to allocate the weights are:
複雑な金融商品の価格付け
- Price American Basket Options Using Standard Monte Carlo and Quasi-Monte Carlo Simulation (Financial Toolbox)
Model the fat-tailed behavior of asset returns and assess the impact of alternative joint distributions on basket option prices. Using various implementations of a separable multivariate Geometric Brownian Motion (GBM) process, often referred to as a multi-dimensional market model, the example simulates risk-neutral sample paths of an equity index portfolio and prices basket put options using the technique of Longstaff & Schwartz. - Calibrate Shifted SABR Model Parameters for Swaption Instrument (Financial Instruments Toolbox)
Calibrate model parameters for aSwaption
(Financial Instruments Toolbox) instrument when you use aSABR
pricing method.
リスクの定量化とリスク モデルの検証
- Risk Modeling with Risk Management Toolbox (Risk Management Toolbox)
Learn about the tools for modeling seven areas of risk assessment. - Bin Data to Create Credit Scorecards Using Binning Explorer (Risk Management Toolbox)
Create a credit scorecard using the Binning Explorer app. Use Binning Explorer to bin the data, plot the binned data information, and export acreditscorecard
object or generate a function that creates acreditscorecard
. Then use thecreditscorecard
object with functions from Financial Toolbox™ to fit a logistic regression model, determine a score for the data, determine the probabilities of default, and validate the credit scorecard model using three different metrics. - Credit Scoring Using Logistic Regression and Decision Trees (Risk Management Toolbox)
Create and compare two credit scoring models, one based on logistic regression and the other based on decision trees.
アプリケーションの本番環境への展開
- Deploy Relational Database Application with MATLAB Compiler (Database Toolbox)
Write a MATLAB script that connects to a relational database and deploy the script as a standalone database application to other machines.