Main Content

このページの翻訳は最新ではありません。ここをクリックして、英語の最新版を参照してください。

状態空間モデル

フリー、正準、構造化のパラメーター化をもつ状態空間モデル、等価の ARMAX モデルおよび OE モデル

アプリ

System IdentificationIdentify models of dynamic systems from measured data

ライブ エディター タスク

状態空間モデルの推定Estimate state-space model using time or frequency data in the Live Editor

関数

ssestEstimate state-space model using time-domain or frequency-domain data
ssregestEstimate state-space model by reduction of regularized ARX model
n4sidEstimate state-space model using subspace method with time-domain or frequency-domain data
idssState-space model with identifiable parameters
pemPrediction error minimization for refining linear and nonlinear models
delayestEstimate time delay (dead time) from data
getpvecObtain model parameters and associated uncertainty data
setpvecModify values of model parameters
getparObtain attributes such as values and bounds of linear model parameters
setparSet attributes such as values and bounds of linear model parameters
ssformQuick configuration of state-space model structure
initSet or randomize initial parameter values
idparCreate parameter for initial states and input level estimation
idssdataState-space data of identified system
findstatesEstimate initial states of model
ssestOptionsOption set for ssest
ssregestOptionsOption set for ssregest
n4sidOptionsOption set for n4sid
findstatesOptionsOption set for findstates

例および操作のヒント

Estimate State-Space Model With Order Selection

To estimate a state-space model, you must provide a value of its order, which represents the number of states. When you do not know the order, you can search and select an order using the following procedures.

Estimate State-Space Models in System Identification App

Import data into the System Identification app. See データの表現. For supported data formats, see Data Supported by State-Space Models.

Estimate State-Space Models at the Command Line

Perform black-box or structured estimation.

Estimate State-Space Models with Free-Parameterization

The default parameterization of the state-space matrices A, B, C, D, and K is free; that is, any elements in the matrices are adjustable by the estimation routines. Because the parameterization of A, B, and C is free, a basis for the state-space realization is automatically selected to give well-conditioned calculations.

Estimate State-Space Models with Canonical Parameterization

Canonical parameterization represents a state-space system in a reduced parameter form where many elements of A, B and C matrices are fixed to zeros and ones. The free parameters appear in only a few of the rows and columns in state-space matrices A, B, C, D, and K. The free parameters are identifiable — they can be estimated to unique values. The remaining matrix elements are fixed to zeros and ones.

Estimate State-Space Models with Structured Parameterization

Structured parameterization lets you exclude specific parameters from estimation by setting these parameters to specific values. This approach is useful when you can derive state-space matrices from physical principles and provide initial parameter values based on physical insight. You can use this approach to discover what happens if you fix specific parameter values or if you free certain parameters.

Estimate State-Space Equivalent of ARMAX and OE Models

This example shows how to estimate ARMAX and OE-form models using the state-space estimation approach.

Use State-Space Estimation to Reduce Model Order

Reduce the order of a Simulink® model by linearizing the model and estimating a lower-order model that retains model dynamics.

概念

状態空間モデルとは

"状態空間モデル" とは、状態変数を使用し、1 つ以上の n 階微分方程式または差分方程式ではなく、一連の 1 階微分方程式または差分方程式によってシステムを記述するモデルです。

Data Supported by State-Space Models

You can use time-domain and frequency-domain data that is real or complex and has single or multiple outputs.

Supported State-Space Parameterizations

System Identification Toolbox™ software supports the following parameterizations that indicate which parameters are estimated and which remain fixed at specific values:

Canonical State-Space Realizations

Modal, companion, observable and controllable canonical state-space models.

Specifying Initial States for Iterative Estimation Algorithms

When you estimate state-space models, you can specify how the algorithm treats initial states. This information supports the estimation procedures Estimate State-Space Models in System Identification App and Estimate State-Space Models at the Command Line.

State-Space Model Estimation Methods

Choose between noniterative subspace methods, iterative method that uses prediction error minimization algorithm, and noniterative method.

Identifying State-Space Models with Separate Process and Measurement Noise Descriptions

An identified linear model is used to simulate and predict system outputs for given input and noise signals. The input signals are measured while the noise signals are only known via their statistical mean and variance. The general form of the state-space model, often associated with Kalman filtering, is an example of such a model, and is defined as: