Main Content

hdlcoder.FloatingPointTargetConfig.IPConfig Class

Namespace: hdlcoder

IP settings for selected floating-point configuration

Description

Use objects of the hdlcoder.FloatingPointTargetConfig.IPConfig class to list the supported IP blocks for a floating-point library. The IP configuration depends on the library settings. The library settings are specific to the floating-point library that you choose. To see the native floating-point and vendor-specific floating point library IP settings:

  1. Create a mixed-mode floating-point target configuration object and specify your desired vendor-specific floating-point library.

    fpconfig = hdlcoder.createFloatingPointTargetConfig("NativeFloatingPoint",...
         VendorFloatingPointLibrary="ALTFP");
    

  2. To see the native floating-point library IP settings, use the IPConfig object.

    fpconfig.IPConfig

  3. To see the vendor-specific floating-point library IP settings, use the VendorIPConfig object.

    fpconfig.VendorIPConfig

To customize the IP configurations, use the customize method of either of the floating-point IP configuration objects.

Creation

Create objects by using the createFloatingPointTargetConfig method.

fpconfig.IPConfig shows the IP settings for the fpconfig mixed-mode floating-point target configuration that you create for the native floating-point library.

fpconfig.VendorIPConfig shows the IP settings for the fpconfig mixed-mode floating-point target configuration that you create for the vendor-specific floating-point library.

Methods

expand all

Examples

collapse all

This example shows how to create a mixed-mode floating-point target configuration with the native floating point (NFP) library and a vendor-specific floating point library in HDL Coder™ and generate code. The vendor library in this example is the Altera® Megafunctions (ALTERAFPFUNCTIONS) library.

Create a Floating-Point Target Configuration

To create a floating-point configuration, set up the path to your synthesis tool by using the hdlsetuptoolpath function. For this example, use Altera Quartus II as your synthesis tool. To setup tools in your environment, run the hdlsetuptoolpath command with the unique synthesis tool path on your computer. For example, the function quartuspath returns the Altera Quartus II synthesis tool path.

hdlsetuptoolpath('ToolName', 'Altera Quartus II','ToolPath', quartuspath);
Prepending following Altera Quartus II path(s) to the system path:
B:\share\apps\HDLTools\Altera\21.1-mw-0\Windows\quartus\bin64

Load the model, sfir_single.

load_system('sfir_single')

Create a mixed-mode floating-point configuration, fpconfig, by using the function hdlcoder.createFloatingPointTargetConfig. The configuration fpconfig contains the NFP library and the Altera Megafunctions library configuration. Using NFP and vendor-specific IP together more efficiently uses resources on the FPGA, such as hardened DSP floating point adder or multiplier primitives, which allows you to fit a bigger design into the FPGA fabric.

fpconfig = hdlcoder.createFloatingPointTargetConfig("NativeFloatingPoint",VendorFloatingPointLibrary="ALTERAFPFUNCTIONS")
fpconfig = 

  FloatingPointTargetConfig with properties:

                  Library: 'NATIVEFLOATINGPOINT'
          LibrarySettings: [1×1 fpconfig.NFPLatencyDrivenMode]
                 IPConfig: [1×1 hdlcoder.FloatingPointTargetConfig.IPConfig]
            VendorLibrary: 'ALTERAFPFUNCTIONS'
    VendorLibrarySettings: [1×1 fpconfig.FrequencyDrivenMode]
           VendorIPConfig: [1×1 hdlcoder.FloatingPointTargetConfig.IPConfig]

Specify Custom NFP Library Settings

To customize the native floating-point configuration, specify custom library settings.

fpconfig.LibrarySettings.HandleDenormals = 'off';
fpconfig.LibrarySettings.LatencyStrategy = 'MIN';
fpconfig.LibrarySettings.MantissaMultiplyStrategy = 'NoMultiplierFullAddShift';
fpconfig.LibrarySettings
ans = 

  NFPLatencyDrivenMode with properties:

               LatencyStrategy: 'Min'
               HandleDenormals: 'Off'
      MantissaMultiplyStrategy: 'NoMultiplierFullAddShift'
    PartAddShiftMultiplierSize: '18x24'
                       Version: '3.0.0'

Specify Custom Vendor-Specific Library Settings

To customize the vendor-specific floating-point configuration, specify custom vendor library settings.

fpconfig.VendorLibrarySettings.InitializeIPPipelinesToZero = true;
fpconfig.VendorLibrarySettings
ans = 

  FrequencyDrivenMode with properties:

    InitializeIPPipelinesToZero: 1

View Latency of Floating-Point IPs

The IPConfig property stores an IPConfig object that displays the maximum and minimum latency values of the native floating-point operators.

fpconfig.IPConfig
ans = 

        Name                DataType             MaxLatency    MinLatency    CustomLatency
    ____________    _________________________    __________    __________    _____________

    {'ABS'     }    {'DOUBLE'               }         0             0             -1      
    {'ABS'     }    {'SINGLE'               }         0             0             -1      
    {'ACOS'    }    {'SINGLE'               }        23            17             -1      
    {'ACOSH'   }    {'SINGLE'               }        93            93             -1      
    {'ADDSUB'  }    {'DOUBLE'               }        11             6             -1      
    {'ADDSUB'  }    {'HALF'                 }         8             4             -1      
    {'ADDSUB'  }    {'SINGLE'               }        11             6             -1      
    {'ASIN'    }    {'SINGLE'               }        23            17             -1      
    {'ASINH'   }    {'SINGLE'               }        94            94             -1      
    {'ATAN'    }    {'SINGLE'               }        36            36             -1      
    {'ATAN2'   }    {'SINGLE'               }        42            42             -1      
    {'ATANH'   }    {'SINGLE'               }        67            67             -1      
    {'CONVERT' }    {'DOUBLE_TO_NUMERICTYPE'}         6             3             -1      
    {'CONVERT' }    {'DOUBLE_TO_SINGLE'     }         6             3             -1      
    {'CONVERT' }    {'HALF_TO_NUMERICTYPE'  }         3             2             -1      
    {'CONVERT' }    {'HALF_TO_SINGLE'       }         2             1             -1      
    {'CONVERT' }    {'NUMERICTYPE_TO_DOUBLE'}         6             3             -1      
    {'CONVERT' }    {'NUMERICTYPE_TO_HALF'  }         4             2             -1      
    {'CONVERT' }    {'NUMERICTYPE_TO_SINGLE'}         6             6             -1      
    {'CONVERT' }    {'SINGLE_TO_DOUBLE'     }         5             3             -1      
    {'CONVERT' }    {'SINGLE_TO_HALF'       }         3             2             -1      
    {'CONVERT' }    {'SINGLE_TO_NUMERICTYPE'}         6             6             -1      
    {'COS'     }    {'DOUBLE'               }        48            48             -1      
    {'COS'     }    {'HALF'                 }        14             9             -1      
    {'COS'     }    {'SINGLE'               }        27            27             -1      
    {'COSH'    }    {'SINGLE'               }        27            17             -1      
    {'DIV'     }    {'DOUBLE'               }        61            31             -1      
    {'DIV'     }    {'HALF'                 }        19            10             -1      
    {'DIV'     }    {'SINGLE'               }        32            17             -1      
    {'EXP'     }    {'HALF'                 }        16             9             -1      
    {'EXP'     }    {'SINGLE'               }        26            16             -1      
    {'FIX'     }    {'DOUBLE'               }         5             3             -1      
    {'FIX'     }    {'SINGLE'               }         5             3             -1      
    {'GAINPOW2'}    {'DOUBLE'               }         2             1             -1      
    {'GAINPOW2'}    {'HALF'                 }         2             1             -1      
    {'GAINPOW2'}    {'SINGLE'               }         2             1             -1      
    {'HDLRECIP'}    {'SINGLE'               }        21            14             -1      
    {'HYPOT'   }    {'SINGLE'               }        33            17             -1      
    {'LOG'     }    {'DOUBLE'               }        44            34             -1      
    {'LOG'     }    {'HALF'                 }        17             9             -1      
    {'LOG'     }    {'SINGLE'               }        27            20             -1      
    {'LOG10'   }    {'HALF'                 }        18            10             -1      
    {'LOG10'   }    {'SINGLE'               }        27            17             -1      
    {'LOG2'    }    {'SINGLE'               }        26            16             -1      
    {'MINMAX'  }    {'SINGLE'               }         3             1             -1      
    {'MOD'     }    {'SINGLE'               }        26            16             -1      
    {'MUL'     }    {'DOUBLE'               }         9             6             -1      
    {'MUL'     }    {'HALF'                 }         6             4             -1      
    {'MUL'     }    {'SINGLE'               }         8             6             -1      
    {'MULTADD' }    {'SINGLE'               }        14             8             -1      
    {'POW'     }    {'SINGLE'               }        54            33             -1      
    {'POW10'   }    {'SINGLE'               }        26            16             -1      
    {'POW2'    }    {'SINGLE'               }        23            14             -1      
    {'RECIP'   }    {'DOUBLE'               }        60            30             -1      
    {'RECIP'   }    {'HALF'                 }        19            10             -1      
    {'RECIP'   }    {'SINGLE'               }        31            16             -1      
    {'RELOP'   }    {'DOUBLE'               }         3             1             -1      
    {'RELOP'   }    {'HALF'                 }         2             1             -1      
    {'RELOP'   }    {'SINGLE'               }         3             1             -1      
    {'REM'     }    {'SINGLE'               }        24            15             -1      
    {'ROUNDING'}    {'DOUBLE'               }         5             3             -1      
    {'ROUNDING'}    {'SINGLE'               }         5             3             -1      
    {'RSQRT'   }    {'DOUBLE'               }        59            33             -1      
    {'RSQRT'   }    {'SINGLE'               }        30            16             -1      
    {'SIGNUM'  }    {'DOUBLE'               }         0             0             -1      
    {'SIGNUM'  }    {'SINGLE'               }         0             0             -1      
    {'SIN'     }    {'DOUBLE'               }        34            34             -1      
    {'SIN'     }    {'HALF'                 }        14             8             -1      
    {'SIN'     }    {'SINGLE'               }        27            27             -1      
    {'SINCOS'  }    {'SINGLE'               }        27            27             -1      
    {'SINH'    }    {'SINGLE'               }        30            18             -1      
    {'SQRT'    }    {'DOUBLE'               }        58            36             -1      
    {'SQRT'    }    {'HALF'                 }        12             6             -1      
    {'SQRT'    }    {'SINGLE'               }        28            16             -1      
    {'TAN'     }    {'SINGLE'               }        33            33             -1      
    {'TANH'    }    {'SINGLE'               }        43            25             -1      
    {'UMINUS'  }    {'DOUBLE'               }         0             0             -1      
    {'UMINUS'  }    {'HALF'                 }         0             0             -1      
    {'UMINUS'  }    {'SINGLE'               }         0             0             -1      

The VendorIPConfig property stores an IPConfig object that displays the maximum and minimum latency values of the vendor-specific floating-point operators.

fpconfig.VendorIPConfig
ans = 

       Name                DataType             Latency    ExtraArgs 
    ___________    _________________________    _______    __________

    {'ABS'    }    {'DOUBLE'               }      -1       {0×0 char}
    {'ABS'    }    {'SINGLE'               }      -1       {0×0 char}
    {'ADDSUB' }    {'DOUBLE'               }      -1       {0×0 char}
    {'ADDSUB' }    {'SINGLE'               }      -1       {0×0 char}
    {'CONVERT'}    {'DOUBLE_TO_NUMERICTYPE'}      -1       {0×0 char}
    {'CONVERT'}    {'NUMERICTYPE_TO_DOUBLE'}      -1       {0×0 char}
    {'CONVERT'}    {'NUMERICTYPE_TO_SINGLE'}      -1       {0×0 char}
    {'CONVERT'}    {'SINGLE_TO_NUMERICTYPE'}      -1       {0×0 char}
    {'COS'    }    {'DOUBLE'               }      -1       {0×0 char}
    {'COS'    }    {'SINGLE'               }      -1       {0×0 char}
    {'DIV'    }    {'DOUBLE'               }      -1       {0×0 char}
    {'DIV'    }    {'SINGLE'               }      -1       {0×0 char}
    {'EXP'    }    {'DOUBLE'               }      -1       {0×0 char}
    {'EXP'    }    {'SINGLE'               }      -1       {0×0 char}
    {'LOG'    }    {'DOUBLE'               }      -1       {0×0 char}
    {'LOG'    }    {'SINGLE'               }      -1       {0×0 char}
    {'MUL'    }    {'DOUBLE'               }      -1       {0×0 char}
    {'MUL'    }    {'SINGLE'               }      -1       {0×0 char}
    {'MULTADD'}    {'SINGLE'               }      -1       {0×0 char}
    {'RECIP'  }    {'DOUBLE'               }      -1       {0×0 char}
    {'RECIP'  }    {'SINGLE'               }      -1       {0×0 char}
    {'RELOP'  }    {'DOUBLE'               }      -1       {0×0 char}
    {'RELOP'  }    {'SINGLE'               }      -1       {0×0 char}
    {'RSQRT'  }    {'DOUBLE'               }      -1       {0×0 char}
    {'RSQRT'  }    {'SINGLE'               }      -1       {0×0 char}
    {'SIN'    }    {'DOUBLE'               }      -1       {0×0 char}
    {'SIN'    }    {'SINGLE'               }      -1       {0×0 char}
    {'SQRT'   }    {'DOUBLE'               }      -1       {0×0 char}
    {'SQRT'   }    {'SINGLE'               }      -1       {0×0 char}

Customize Latency of ADDSUB Vendor IP

Using the customize method of either of the IPConfig objects, you can customize the latency of the floating-point IP and specify any additional arguments. In this example, customize the latency of the vendor IP by using the VendorIPConfig.customize method.

fpconfig.VendorIPConfig.customize('ADDSUB','Single','Latency',6);
fpconfig.VendorIPConfig
ans = 

       Name                DataType             Latency    ExtraArgs 
    ___________    _________________________    _______    __________

    {'ABS'    }    {'DOUBLE'               }      -1       {0×0 char}
    {'ABS'    }    {'SINGLE'               }      -1       {0×0 char}
    {'ADDSUB' }    {'DOUBLE'               }      -1       {0×0 char}
    {'ADDSUB' }    {'SINGLE'               }       6       {0×0 char}
    {'CONVERT'}    {'DOUBLE_TO_NUMERICTYPE'}      -1       {0×0 char}
    {'CONVERT'}    {'NUMERICTYPE_TO_DOUBLE'}      -1       {0×0 char}
    {'CONVERT'}    {'NUMERICTYPE_TO_SINGLE'}      -1       {0×0 char}
    {'CONVERT'}    {'SINGLE_TO_NUMERICTYPE'}      -1       {0×0 char}
    {'COS'    }    {'DOUBLE'               }      -1       {0×0 char}
    {'COS'    }    {'SINGLE'               }      -1       {0×0 char}
    {'DIV'    }    {'DOUBLE'               }      -1       {0×0 char}
    {'DIV'    }    {'SINGLE'               }      -1       {0×0 char}
    {'EXP'    }    {'DOUBLE'               }      -1       {0×0 char}
    {'EXP'    }    {'SINGLE'               }      -1       {0×0 char}
    {'LOG'    }    {'DOUBLE'               }      -1       {0×0 char}
    {'LOG'    }    {'SINGLE'               }      -1       {0×0 char}
    {'MUL'    }    {'DOUBLE'               }      -1       {0×0 char}
    {'MUL'    }    {'SINGLE'               }      -1       {0×0 char}
    {'MULTADD'}    {'SINGLE'               }      -1       {0×0 char}
    {'RECIP'  }    {'DOUBLE'               }      -1       {0×0 char}
    {'RECIP'  }    {'SINGLE'               }      -1       {0×0 char}
    {'RELOP'  }    {'DOUBLE'               }      -1       {0×0 char}
    {'RELOP'  }    {'SINGLE'               }      -1       {0×0 char}
    {'RSQRT'  }    {'DOUBLE'               }      -1       {0×0 char}
    {'RSQRT'  }    {'SINGLE'               }      -1       {0×0 char}
    {'SIN'    }    {'DOUBLE'               }      -1       {0×0 char}
    {'SIN'    }    {'SINGLE'               }      -1       {0×0 char}
    {'SQRT'   }    {'DOUBLE'               }      -1       {0×0 char}
    {'SQRT'   }    {'SINGLE'               }      -1       {0×0 char}

Generate Code

For the sfir_single model, set the FloatingPointTargetConfiguration property to use the floating-point target configuration object, fpconfig.

hdlset_param('sfir_single',FloatingPointTargetConfiguration=fpconfig);

Set the simulation library path in order to compile and simulate the generated code with your specified simulation tool.

hdlset_param('sfir_single','SimulationLibPath',alterasimulationlibpath);

Set the SynthesisToolChipFamily property to Arria10 and generate HDL code by using the makehdl command. The generated code files are stored in the directory path specified by TargetDirectory property. In this example, the generated VHDL code is stored in the C:/MixedModeFloatingPoint/hdlsrc folder.

makehdl('sfir_single/symmetric_fir',SynthesisToolChipFamily='Arria10',...
   TargetDirectory='C:/MixedModeFloatingPoint/hdlsrc')
### Generating HDL for 'sfir_single/symmetric_fir'.
### Using the config set for model <a href="matlab:configset.showParameterGroup('sfir_single', { 'HDL Code Generation' } )">sfir_single</a> for HDL code generation parameters.
### Running HDL checks on the model 'sfir_single'.
### Begin compilation of the model 'sfir_single'...
### Working on the model 'sfir_single'...
### Using B:\share\apps\HDLTools\Altera\21.1-mw-0\Windows\quartus\bin64\..\sopc_builder\bin\ip-generate for the selected floating point IP library.
### Generating Altera(R) megafunction: alterafpf_mul_single for target frequency of 200 MHz.
### Found an existing generated file in a previous session: (C:\MixedModeFloatingPoint\hdlsrc\sfir_single\Altera\Arria10\unspecified\F200\synth\alterafpf_mul_single.vhd). Reusing the generated file.
### alterafpf_mul_single takes 3 cycles.
### Done.
### The code generation and optimization options you have chosen have introduced additional pipeline delays.
### The delay balancing feature has automatically inserted matching delays for compensation.
### The DUT requires an initial pipeline setup latency. Each output port experiences these additional delays.
### Output port 1: 21 cycles.
### Output port 2: 21 cycles.
### Working on... <a href="matlab:configset.internal.open('sfir_single', 'GenerateModel')">GenerateModel</a>
### Begin model generation 'gm_sfir_single' ....
### Rendering DUT with optimization related changes (IO, Area, Pipelining)...
### Model generation complete.
### Generating Altera(R) megafunction: alterafpf_add_single for latency of 6.
### Found an existing generated file in a previous session: (C:\MixedModeFloatingPoint\hdlsrc\sfir_single\Altera\Arria10\unspecified\L6\synth\alterafpf_add_single.vhd). Reusing the generated file.
### Done.
### Begin VHDL Code Generation for 'sfir_single'.
### Working on sfir_single/symmetric_fir as C:\MixedModeFloatingPoint\hdlsrc\sfir_single\symmetric_fir.vhd.
### Generating package file C:\MixedModeFloatingPoint\hdlsrc\sfir_single\symmetric_fir_pkg.vhd.
### Code Generation for 'sfir_single' completed.
### Creating HDL Code Generation Check Report file:///C:/MixedModeFloatingPoint/hdlsrc/sfir_single/symmetric_fir_report.html
### HDL check for 'sfir_single' complete with 0 errors, 0 warnings, and 0 messages.
### HDL code generation complete.

The latency of the ADDSUB IP is 6 and not the maximum latency value of 14.

Version History

Introduced in R2016b