平滑化
平滑化スプラインと局所的な回帰を使用した近似、移動平均やその他のフィルターによるデータ平滑化
平滑化は、データセット内のノイズを低減するための手法です。Curve Fitting Toolbox™ では、移動平均、Savitzky-Golay フィルター、Lowess モデルなどの手法や、平滑化スプラインによる近似を使用してデータを平滑化できます。
曲線フィッター アプリを使用して対話的に、またはコマンド ラインで関数 smooth
を使用して、データを平滑化できます。データを平滑化する方法を示す例については、滑らかな曲面での近似による燃料効率の調査を参照してください。
アプリ
曲線フィッター | 曲線や曲面によるデータへの近似 |
関数
datastats | データ統計 |
excludedata | 近似からデータを除外 |
fit | 曲線または曲面によるデータへの近似 |
fittype | 曲線近似および曲面近似の近似タイプ |
fitoptions | 近似オプション オブジェクトを作成または変更する |
get | 近似オプションの構造体のプロパティの名前と値を取得する |
set | 近似オプションの構造体への値の割り当て |
smooth | 応答データを平滑化する |
prepareCurveData | データ入力を曲線近似用に準備する |
prepareSurfaceData | データ入力を曲面近似用に準備する |
トピック
- 平滑化スプライン
データから滑らかな曲線を作成して滑らかさを指定する、曲線フィッター アプリまたは関数
fit
での平滑化スプラインによる近似。 - Lowess 平滑化
曲線フィッター アプリまたは関数
fit
で Lowess モデルを使用して滑らかな曲面をデータに当てはめる。 - データのフィルター処理と平滑化
移動平均、Savitzky-Golay フィルター、重みやロバスト性を使用するまたは使用しない局所回帰 (
lowess
、loess
、rlowess
およびrloess
) を使用した、関数smooth
による応答データの平滑化。 - 滑らかな曲面での近似による燃料効率の調査
この例では、Curve Fitting Toolbox™ を使用して応答曲面を自動車のデータに当てはめ、燃料効率を調査する方法を示します。
- ノンパラメトリック近似
内挿および平滑化スプラインによりデータから滑らかな曲線または曲面を作成するノンパラメトリック近似の実行。