最新のリリースでは、このページがまだ翻訳されていません。 このページの最新版は英語でご覧になれます。

lqg

線形 2 次ガウシアン (LQG) 設計

構文

reg = lqg(sys,QXU,QWV)
reg = lqg(sys,QXU,QWV,QI)
reg = lqg(sys,QXU,QWV,QI,'1dof')
reg = lqg(sys,QXU,QWV,QI,'2dof')
reg = lqg(___,'current')
[reg,info] = lqg(___)

説明

reg = lqg(sys,QXU,QWV) は、プラントの状態空間モデル sys と重み行列 QXUQWV を与えて最適な線形 2 次ガウシアン (LQG) レギュレーター reg を計算します。ダイナミック レギュレーター reg は、0 の値の周りで y を調節する制御信号 u を生成するために、測定値 y を使用します。このレギュレーターをプラント出力 y に接続するには、正のフィードバックを使用してください。

LQG レギュレーターは、次のコスト関数を最小化します。

J=E{limτ1τ0τ[xT,uT]Qxu[xu]dt}

これは、以下のプラント方程式の下で行われます。

dx/dt=Ax+Bu+wy=Cx+Du+v

ここで、プロセス ノイズw、観測ノイズ v は、以下の共分散をもつガウス性ホワイト ノイズです。

E([wv][w'v'])=QWV

reg = lqg(sys,QXU,QWV,QI) は、制御信号 u を生成するために、設定値コマンド r と測定値 y を使用します。reg は、y がこのコマンド r をトラッキングするような積分動作を行います。

LQG サーボコントローラーは、次のコスト関数を最小化します。

J=E{limτ1τ0τ([xT,uT]Qxu[xu]+xiTQixi)dt}

ここで、xi は追従誤差 r - y の積分です。MIMO システムの場合、r、y、xi は、同じ長さでなければなりません。

reg = lqg(sys,QXU,QWV,QI,'1dof') は、入力として [r ; y] ではなく e = r - y をもつ自由度 1 のサーボ コントローラーを計算します。

reg = lqg(sys,QXU,QWV,QI,'2dof') は、LQG(sys,QXU,QWV,QI) と等価であり、前述した自由度 2 のサーボコントローラーを生成します。

reg = lqg(___,'current') は、"現在の" カルマン推定器を使用します。この推定器は離散時間システムの LQG レギュレーターを計算する際、状態推定値として x[n|n] を使用します。

[reg,info] = lqg(___) は、前述の任意の構文で、コントローラーと推定器のゲイン行列を構造体 info に返します。コントローラーと推定器のゲインは、たとえばコントローラーをオブザーバー形式で実装する場合などに使用できます。詳細については、アルゴリズムを参照してください。

線形 2 次ガウシアン (LQG) レギュレーターとサーボ コントローラーの設計

この例では、線形 2 次ガウシアン (LQG) レギュレーター、自由度 1 の LQG サーボ コントローラー、および自由度 2 の LQG サーボ コントローラーを次のシステム用に設計する方法を示します。

プラントには、3 つの状態 (x)、2 つの制御入力 (u)、3 つのランダム入力 (w)、1 つの出力 (y)、出力の測定ノイズ (v)、および次の状態方程式と測定方程式があります。

dxdt=Ax+Bu+wy=Cx+Du+v

ここで、

A=[010001100]B=[0.31010.30.9]C=[1.91.31]D=[0.530.61]

システムには次のノイズ共分散データがあります。

Qn=E(wwT)=[420210001]Rn=E(vvT)=0.7

レギュレーターでは、次のコスト関数を使用してレギュレーション性能と制御操作とのトレードオフを定義します。

J(u)=0(0.1xTx+uT[1002]u)dt

サーボ コントローラーでは、次のコスト関数を使用してトラッカーの性能と制御操作とのトレードオフを定義します。

J(u)=0(0.1xTx+xi2+uT[1002]u)dt

このシステムの LQG コントローラーを設計するには

  1. MATLAB コマンド ウィンドウに次のように入力して、状態空間システムを作成します。

    A = [0 1 0;0 0 1;1 0 0];    
    B = [0.3 1;0 1;-0.3 0.9];
    C = [1.9 1.3 1];  
    D = [0.53 -0.61];
    sys = ss(A,B,C,D);

  2. 次のコマンドを入力して、ノイズ共分散データと重み行列を定義します。

    nx = 3;    %Number of states
    ny = 1;    %Number of outputs
    Qn = [4 2 0; 2 1 0; 0 0 1];
    Rn = 0.7;
    R = [1 0;0 2]
    QXU = blkdiag(0.1*eye(nx),R);
    QWV = blkdiag(Qn,Rn);
    QI = eye(ny);

  3. 次のコマンドを入力して、LQG レギュレーターを作成します。

    KLQG = lqg(sys,QXU,QWV)
    このコマンドは、次の LQG レギュレーターを返します。
    A = 
               x1_e    x2_e    x3_e
       x1_e  -6.212  -3.814  -4.136
       x2_e  -4.038  -3.196  -1.791
       x3_e  -1.418  -1.973  -1.766
     
    B = 
                 y1
       x1_e   2.365
       x2_e   1.432
       x3_e  0.7684
     
    C = 
                x1_e       x2_e       x3_e
       u1   -0.02904  0.0008272     0.0303
       u2    -0.7147    -0.7115    -0.7132
     
    D = 
           y1
       u1   0
       u2   0
     
    Input groups:              
           Name        Channels
        Measurement       1    
                               
    Output groups:             
          Name      Channels   
        Controls      1,2      
                               
    Continuous-time model.

  4. 次のコマンドを入力して、自由度 1 の LQG サーボ コントローラーを作成します。

    KLQG1 = lqg(sys,QXU,QWV,QI,'1dof')
    このコマンドは、次の LQG サーボ コントローラーを返します。
    A = 
               x1_e    x2_e    x3_e     xi1
       x1_e  -7.626  -5.068  -4.891  0.9018
       x2_e  -5.108  -4.146  -2.362  0.6762
       x3_e  -2.121  -2.604  -2.141  0.4088
       xi1        0       0       0       0
     
    B = 
                  e1
       x1_e   -2.365
       x2_e   -1.432
       x3_e  -0.7684
       xi1         1
     
    C = 
              x1_e     x2_e     x3_e      xi1
       u1  -0.5388  -0.4173  -0.2481   0.5578
       u2   -1.492   -1.388   -1.131   0.5869
     
    D = 
           e1
       u1   0
       u2   0
     
    Input groups:           
        Name     Channels   
        Error       1       
                            
    Output groups:          
          Name      Channels
        Controls      1,2   
                            
    Continuous-time model.

  5. 次のコマンドを入力して、自由度 2 の LQG サーボ コントローラーを作成します。

    KLQG2 = lqg(sys,QXU,QWV,QI,'2dof')
    このコマンドは、次の LQG サーボ コントローラーを返します。
    A = 
               x1_e    x2_e    x3_e     xi1
       x1_e  -7.626  -5.068  -4.891  0.9018
       x2_e  -5.108  -4.146  -2.362  0.6762
       x3_e  -2.121  -2.604  -2.141  0.4088
       xi1        0       0       0       0
     
    B = 
                 r1      y1
       x1_e       0   2.365
       x2_e       0   1.432
       x3_e       0  0.7684
       xi1        1      -1
     
    C = 
              x1_e     x2_e     x3_e      xi1
       u1  -0.5388  -0.4173  -0.2481   0.5578
       u2   -1.492   -1.388   -1.131   0.5869
     
    D = 
           r1  y1
       u1   0   0
       u2   0   0
     
    Input groups:              
           Name        Channels
         Setpoint         1    
        Measurement       2    
                               
    Output groups:             
          Name      Channels   
        Controls      1,2      
                               
    Continuous-time model.

ヒント

  • lqg は、連続、離散時間プラントの両方で使用することができます。離散時間の場合、lqg はその状態推定値として既定で x[n|n-1] を使用します。x[n|n] を状態推定値に使用して最適な LQG コントローラーを計算するには、'current' 入力引数を使用します。状態推定器の詳細については、kalman を参照してください。

  • LQG レギュレーターを計算するには、lqg はコマンド lqrkalman を使用します。サーボコントローラーを計算するには、lqg はコマンド lqikalman を使用します。

  • レギュレーターの設計に柔軟性をもたせる場合は、lqrkalmanlqgreg コマンドを使用できます。サーボ コントローラーの設計に柔軟性をもたせる場合は、lqikalmanlqgtrack コマンドを使用できます。これらのコマンドの使用方法および使用状況の判断方法については、レギュレーターの線形 2 次ガウシアン (LQG) 設計線形 2 次ガウシアン (LQG) 法による積分動作を含むサーボ コントローラーの設計を参照してください。

アルゴリズム

コントローラーの方程式は次のとおりです。

  • 連続時間の場合:

    dxe=Axe+Bu+L(yCxeDu)u=KxxeKixi

  • 離散時間の場合:

    x[n+1|n]=Ax[n|n1]+Bu[n]+L(y[n]Cx[n|n1]Du[n])

    • 遅延推定器:

      u[n]=Kxx[n|n1]Kixi[n]

    • 現在の推定器:

      u[n]=Kxx[n|n]Kixi[n]Kww[n|n]=Kxx[n|n1]Kixi[n](KxMx+KwMw)yinn[n]

      yinn[n]=y[n]Cx[n|n1]Du[n]

ここで

  • A、B、C および D は、LQG レギュレーター reg の状態空間行列です。

  • xi は追従誤差 r - y の積分です。

  • Kx、Kw、Ki、L、Mx および Mw は、info に返されるコントローラーと推定器のゲイン行列です。

参考

| | | | | |

R2006a より前に導入