CVaR Portfolio Optimization
Portfolio optimization is a mathematical approach to making investment decisions across a collection of financial instruments or assets. The goal of portfolio optimization is to find the mix of investments that achieve a desired risk versus return tradeoff. The conventional method for portfolio optimization is mean-variance portfolio optimization, which is based on the assumption that returns are normally distributed.
On the other hand, conditional value-at-risk (CVaR) is the extended risk measure of value-at-risk that quantifies the average loss over a specified time period of scenarios beyond the confidence level. For example, a one-day 99% CVaR of $12 million means the expected loss of the worst 1% scenarios over a one-day period is $12 million. Moreover, CVaR is also known as expected shortfall.
With CVaR portfolio optmization, you do not need to assume normally distributed returns. In this example, you will learn:
- How to use copula to generate correlated asset scenarios that try to mimic the pattern of historical returns
- How to apply CVaR portfolio optimization based on simulated asset scenarios
- How to compare the efficient frontiers between CVaR portfolio optimization and mean-variance portfolio optimization
Related Products
Learn More
Featured Product
Financial Toolbox
Up Next:
Related Videos:
Web サイトの選択
Web サイトを選択すると、翻訳されたコンテンツにアクセスし、地域のイベントやサービスを確認できます。現在の位置情報に基づき、次のサイトの選択を推奨します: .
また、以下のリストから Web サイトを選択することもできます。
最適なサイトパフォーマンスの取得方法
中国のサイト (中国語または英語) を選択することで、最適なサイトパフォーマンスが得られます。その他の国の MathWorks のサイトは、お客様の地域からのアクセスが最適化されていません。
南北アメリカ
- América Latina (Español)
- Canada (English)
- United States (English)
ヨーロッパ
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
アジア太平洋地域
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)