最新のリリースでは、このページがまだ翻訳されていません。 このページの最新版は英語でご覧になれます。

YOLO v2 を使用したオブジェクト検出用のコード生成

この例では、You Only Look Once (YOLO) v2 オブジェクト検出器用の CUDA® MEX を生成する方法を説明します。YOLO v2 オブジェクトの検出ネットワークは 2 つのサブネットワークで構成されます。特徴抽出ネットワークに検出ネットワークが続きます。この例では、Computer Vision Toolbox™ からの Object Detection Using YOLO v2 の例で学習されたネットワーク向けのコードを生成します。詳細については、YOLO v2 深層学習を使用したオブジェクトの検出 (Computer Vision Toolbox)を参照してください。

必要条件

  • Compute Capability 3.2 以上の CUDA 対応 NVIDIA® GPU。

  • NVIDIA CUDA ツールキットおよびドライバー。

  • NVIDIA cuDNN ライブラリ。

  • コンパイラおよびライブラリの環境変数。サポートされているコンパイラおよびライブラリのバージョンの詳細は、サードパーティ製品を参照してください。環境変数の設定は、前提条件となる製品の設定を参照してください。

  • GPU Coder Interface for Deep Learning Libraries サポート パッケージ。このサポート パッケージをインストールするには、アドオン エクスプローラーを使用します。

GPU 環境の検証

関数coder.checkGpuInstallを使用して、この例を実行するのに必要なコンパイラおよびライブラリが正しく設定されていることを検証します。

envCfg = coder.gpuEnvConfig('host');
envCfg.DeepLibTarget = 'cudnn';
envCfg.DeepCodegen = 1;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg);

事前学習済みの DAGNetwork の取得

net = getYOLOv2();

この DAG ネットワークには、畳み込み層、ReLU 層、バッチ正規化層、および YOLO v2 変換層や YOLO v2 出力層など、150 個の層が含まれています。深層学習ネットワーク アーキテクチャを対話的に可視化して表示するには、関数analyzeNetworkを使用します。

analyzeNetwork(net);

yolov2_detect エントリポイント関数

エントリポイント関数 yolov2_detect.m は、イメージ入力を受け取り、yolov2ResNet50VehicleExample.mat ファイルに保存されている深層学習ネットワークを使用して、イメージについて検出器を実行します。この関数は、ネットワーク オブジェクトを yolov2ResNet50VehicleExample.mat ファイルから永続変数 mynet に読み込み、以降の検出呼び出しではその永続オブジェクトを再利用します。

type('yolov2_detect.m')
function outImg = yolov2_detect(in)

%   Copyright 2018-2019 The MathWorks, Inc.

persistent yolov2Obj;

if isempty(yolov2Obj)
    yolov2Obj = coder.loadDeepLearningNetwork('yolov2ResNet50VehicleExample.mat');
end

% pass in input
[bboxes,~,labels] = yolov2Obj.detect(in,'Threshold',0.5);

% convert categorical labels to cell array of charactor vectors for MATLAB
% execution
if coder.target('MATLAB')
    labels = cellstr(labels);
end

% Annotate detections in the image.
outImg = insertObjectAnnotation(in,'rectangle',bboxes,labels);

MEX コード生成の実行

エントリポイント関数 yolov2_detect.m 用の CUDA コードを生成するには、MEX ターゲットの GPU コード構成オブジェクトを作成し、ターゲット言語を C++ に設定します。関数 coder.DeepLearningConfig を使用して CuDNN 深層学習構成オブジェクトを作成し、それを GPU コード構成オブジェクトの DeepLearningConfig プロパティに割り当てます。[224,224,3] の入力サイズを指定して codegen コマンドを実行します。この値は YOLOv2 の入力層サイズに対応します。

cfg = coder.gpuConfig('mex');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn');
codegen -config cfg yolov2_detect -args {ones(224,224,3,'uint8')} -report
Code generation successful: To view the report, open('codegen/mex/yolov2_detect/html/report.mldatx').

生成された MEX の実行

ビデオ ファイル リーダーを設定し、入力ビデオを読み取ります。ビデオ プレイヤーを作成し、ビデオと出力の検出を表示します。

videoFile = 'highway_lanechange.mp4';
videoFreader = vision.VideoFileReader(videoFile,'VideoOutputDataType','uint8');
depVideoPlayer = vision.DeployableVideoPlayer('Size','Custom','CustomSize',[640 480]);

ビデオ入力をフレームごとに読み取り、検出器を使用してビデオ内の車両を検出します。

cont = ~isDone(videoFreader);
while cont
    I = step(videoFreader);
    in = imresize(I,[224,224]);
    out = yolov2_detect_mex(in);
    step(depVideoPlayer, out);
    cont = ~isDone(videoFreader) && isOpen(depVideoPlayer); % Exit the loop if the video player figure window is closed
end

参考文献

[1] Redmon, Joseph, and Ali Farhadi."YOLO9000: Better, Faster, Stronger."2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).IEEE, 2017.