Cleaning and Preparing Time Series Data
Time series data are everywhere. Whether it is from sensors on automated vehicles and manufacturing equipment, meteorological data, or financial data from the equities market, it helps us understand the behavior of a system over time. However, real-world time series data can have many issues like missing data, outliers, noise, etc. The data needs to be cleaned and prepped first before it can be analyzed or used for model development. Unfortunately, it is not always clear how to clean this data. Which algorithm should be used for filling missing values? Should outliers be removed first or noise? How is data that is measured using different sample rates synchronized? The process is iterative and can be very time consuming. In this session, we will show you how to use timetables with the new Data Cleaner app and Live Editor tasks to identify and fix common issues in time series data. We will cover different data cleaning methods using both code and low-code techniques that can make the data prep process more efficient.
Published: 31 May 2022
Featured Product
MATLAB
Up Next:
Related Videos:
Web サイトの選択
Web サイトを選択すると、翻訳されたコンテンツにアクセスし、地域のイベントやサービスを確認できます。現在の位置情報に基づき、次のサイトの選択を推奨します:
また、以下のリストから Web サイトを選択することもできます。
最適なサイトパフォーマンスの取得方法
中国のサイト (中国語または英語) を選択することで、最適なサイトパフォーマンスが得られます。その他の国の MathWorks のサイトは、お客様の地域からのアクセスが最適化されていません。
南北アメリカ
- América Latina (Español)
- Canada (English)
- United States (English)
ヨーロッパ
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
アジア太平洋地域
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)