クラスターの可視化と評価
データのクラスターをプロットおよびクラスターの最適数を評価
クラスター分析では、データ点の間の類似度に基づいてデータをグループに編成します。適切なクラスター数を示す自然な区分がデータに含まれている場合があります。また、自然な区分がデータに含まれていない場合や、自然な区分が不明な場合もあります。このような場合は、データをグループ化するために最適なクラスター数を決定します。
特定のクラスター数にデータがどの程度適合するかを調べるには、ギャップやシルエットなど各種の評価基準を使用してインデックス値を計算します。クラスターを可視化するには、系統樹プロットを作成して階層的なバイナリ クラスター ツリーを表示します。隣接する葉の間で類似度の合計が最大になるように、葉の順序を最適化します。各グループに複数の測定値があるグループ化されたデータの場合は、多変量分散分析 (MANOVA) を使用して計算したグループの平均に基づいて系統樹プロットを作成します。
ライブ エディター タスク
データのクラスタリング | ライブ エディターでの k-means クラスタリングまたは階層的クラスタリングを使用したデータのクラスタリング (R2021b 以降) |
関数
オブジェクト
CalinskiHarabaszEvaluation | Calinski-Harabasz 基準クラスタリング評価オブジェクト |
DaviesBouldinEvaluation | Davies-Bouldin 基準クラスタリング評価オブジェクト |
GapEvaluation | ギャップ基準クラスタリング評価オブジェクト |
SilhouetteEvaluation | シルエット基準クラスタリング評価オブジェクト |
トピック
- クラスター評価
この例では、
evalclusters
を使用してクラスターを識別する方法を示します。