surface
Primitive surface plot
Syntax
Description
surface(
creates a primitive, three-dimensional surface plot. The function plots the
values in matrix X
,Y
,Z
)Z
as heights above a grid in the
x-y plane defined by
X
and Y
. The color of the surface
varies according to the heights specified by Z
.
Unlike the surf
function, the primitive
surface
function does not call newplot
before plotting and
does not respect the value of the NextPlot
property for the
figure or axes. Instead, it adds the surface plot to the current axes without
deleting other graphics objects or resetting axes properties.
surface(
creates a primitive
surface plot and uses the column and row indices of the elements in
Z
)Z
as the x- and
y-coordinates.
surface(
plots
into the axes specified by ax
,___)ax
instead of the current axes.
Specify the axes as the first input argument.
surface(___,
specifies surface properties using one or more name-value pair arguments. For
example, Name,Value
)'FaceAlpha',0.5
creates a semitransparent
surface.
s = surface(___)
returns the chart primitive
surface object. Use s
to modify the surface after it is
created. For a list of properties, see Surface Properties.
Examples
Create Surface Plot
Create three matrices of the same size. Then plot them as a surface. The surface uses Z
for both height and color.
[X,Y] = meshgrid(1:0.5:10,1:20); Z = sin(X) + cos(Y); surface(X,Y,Z)
By default, surface displays in the axes using a two-dimensional view. Change the axes to a three-dimensional view.
view(3)
Specify Colormap Colors for Surface Plot
Specify the colors for a surface plot by including a fourth matrix input, C
. The mesh plot uses Z
for height and C
for color. Specify the colors using a colormap, which uses single numbers to stand for colors on a spectrum. When you use a colormap, C
is the same size as Z
. Add a color bar to the graph to show how the data values in C
correspond to the colors in the colormap, and set the view of the plot to the default three-dimensional view.
[X,Y] = meshgrid(1:0.5:10,1:20); Z = sin(X) + cos(Y); C = X.*Y; surface(X,Y,Z,C) colorbar view(3)
Modify Surface Plot Appearance
Create a semitransparent surface by specifying the FaceAlpha
name-value pair with 0.5
as the value. To allow further modifications, assign the surface object to the variable s
.
[X,Y] = meshgrid(-5:.5:5);
Z = Y.*sin(X) - X.*cos(Y);
s = surface(X,Y,Z,'FaceAlpha',0.5);
view(3)
Use s
to access and modify properties of the surface object after it is created. For example, hide the edges by setting the EdgeColor
property.
s.EdgeColor = 'none';
Display Image Along Surface Plot
Create a surface and display an image along it.
Create three matrices of the same size.
[pX,pY,pZ] = peaks(25);
Load a data set containing an image of the Earth. The image data appears in a workspace variable X
, and the associated colormap appears in map
.
load earth
who
Your variables are: X map pX pY pZ
Create a surface plot and display the image along the surface. Since the surface data pZ
and the color data X have different sizes, set the surface FaceColor
to 'texturemap'
. Set the view of the plot to the default three-dimensional view.
surface(pX,pY,pZ,X,'FaceColor','texturemap', ... 'EdgeColor','none','CDataMapping','direct') colormap(map) view(3)
Input Arguments
X
— x-coordinates
matrix | vector
x-coordinates, specified as a matrix the same size as
Z
, or as a vector with length n
,
where [m,n] = size(Z)
. If you do not specify values for
X
and Y
,
surface
uses the vectors (1:n)
and (1:m)
.
You can use the meshgrid
function to create
X
and Y
matrices.
The XData
property of the Surface
object stores the x-coordinates.
Example: X = 1:10
Example: X = [1 2 3; 1 2 3; 1 2 3]
Example: [X,Y] = meshgrid(-5:0.5:5)
Data Types: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
| categorical
| datetime
| duration
Y
— y-coordinates
matrix | vector
y-coordinates, specified as a matrix the same size as
Z
or as a vector with length m
,
where [m,n] = size(Z)
. If you do not specify values for
X
and Y
,
surface
uses the vectors (1:n)
and (1:m)
.
You can use the meshgrid
function to create
the X
and Y
matrices.
The YData
property of the surface object stores the
y-coordinates.
Example: Y = 1:10
Example: Y = [1 1 1; 2 2 2; 3 3 3]
Example: [X,Y] = meshgrid(-5:0.5:5)
Data Types: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
| categorical
| datetime
| duration
Z
— z-coordinates
matrix
z-coordinates, specified as a matrix.
Z
must have at least two rows and two columns.
Z
specifies the height of the surface plot at each
x-y coordinate. If you do not
specify the colors, then Z
also specifies the surface
colors.
The ZData
property of the surface object stores the
z-coordinates.
Example: Z = [1 2 3; 4 5 6]
Example: Z = sin(x) + cos(y)
Data Types: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
| categorical
| datetime
| duration
C
— Color array
matrix | m
-by-n
-by-3
array of RGB triplets
Color array, specified as an m
-by-n
matrix of colormap indices or as an
m
-by-n
-by-3
array of RGB triplets, where Z
is
m
-by-n
.
To use colormap colors, specify
C
as a matrix. For each grid point on the surface,C
indicates a color in the colormap. TheCDataMapping
property of the surface object controls how the values inC
correspond to colors in the colormap.To use truecolor colors, specify
C
as an array of RGB triplets.
For more information, see Differences Between Colormaps and Truecolor.
The CData
property of the surface object stores the
color array. For additional control over the surface coloring, use the
FaceColor
and EdgeColor
properties.
ax
— Axes to plot in
axes object
Axes to plot in, specified as an axes
object. If you do
not specify the axes, then surface
plots into the current
axes.
Name-Value Arguments
Specify optional pairs of arguments as
Name1=Value1,...,NameN=ValueN
, where Name
is
the argument name and Value
is the corresponding value.
Name-value arguments must appear after other arguments, but the order of the
pairs does not matter.
Before R2021a, use commas to separate each name and value, and enclose
Name
in quotes.
Example: surface(X,Y,Z,'FaceAlpha',0.5,'EdgeColor','none')
creates a semitransparent surface with no edges drawn.
Note
The properties listed here are only a subset. For a full list, see Surface Properties.
EdgeColor
— Edge line color
[0 0 0]
(default) | 'none'
| 'flat'
| 'interp'
| RGB triplet | hexadecimal color code | 'r'
| 'g'
| 'b'
| ...
Edge line color, specified as one of the values listed here.
The default color of [0 0 0]
corresponds to black
edges.
Value | Description |
---|---|
'none' | Do not draw the edges. |
'flat' | Use a different color for each edge based on the values
in the |
'interp' |
Use interpolated coloring for each edge based on the values in the
|
RGB triplet, hexadecimal color code, or color name |
Use the specified color for all the edges. This option does not use the color
values in the
|
RGB triplets and hexadecimal color codes are useful for specifying custom colors.
An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range
[0,1]
; for example,[0.4 0.6 0.7]
.A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (
#
) followed by three or six hexadecimal digits, which can range from0
toF
. The values are not case sensitive. Thus, the color codes"#FF8800"
,"#ff8800"
,"#F80"
, and"#f80"
are equivalent.
Alternatively, you can specify some common colors by name. This table lists the named color options, the equivalent RGB triplets, and hexadecimal color codes.
Color Name | Short Name | RGB Triplet | Hexadecimal Color Code | Appearance |
---|---|---|---|---|
"red" | "r" | [1 0 0] | "#FF0000" | |
"green" | "g" | [0 1 0] | "#00FF00" | |
"blue" | "b" | [0 0 1] | "#0000FF" | |
"cyan"
| "c" | [0 1 1] | "#00FFFF" | |
"magenta" | "m" | [1 0 1] | "#FF00FF" | |
"yellow" | "y" | [1 1 0] | "#FFFF00" | |
"black" | "k" | [0 0 0] | "#000000" | |
"white" | "w" | [1 1 1] | "#FFFFFF" |
Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB® uses in many types of plots.
RGB Triplet | Hexadecimal Color Code | Appearance |
---|---|---|
[0 0.4470 0.7410] | "#0072BD" | |
[0.8500 0.3250 0.0980] | "#D95319" | |
[0.9290 0.6940 0.1250] | "#EDB120" | |
[0.4940 0.1840 0.5560] | "#7E2F8E" | |
[0.4660 0.6740 0.1880] | "#77AC30" | |
[0.3010 0.7450 0.9330] | "#4DBEEE" | |
[0.6350 0.0780 0.1840] | "#A2142F" |
LineStyle
— Line style
"-"
(default) | "--"
| ":"
| "-."
| "none"
Line style, specified as one of the options listed in this table.
Line Style | Description | Resulting Line |
---|---|---|
"-" | Solid line |
|
"--" | Dashed line |
|
":" | Dotted line |
|
"-." | Dash-dotted line |
|
"none" | No line | No line |
FaceColor
— Face color
'flat'
(default) | 'interp'
| 'none'
| 'texturemap'
| RGB triplet | hexadecimal color code | 'r'
| 'g'
| 'b'
| ...
Face color, specified as one of the values in this table.
Value | Description |
---|---|
'flat' | Use a different color for each face based on the values
in the |
'interp' |
Use interpolated coloring for each face based on the values in the
|
RGB triplet, hexadecimal color code, or color name |
Use the specified color for all the faces. This option does not use the color
values in the
|
'texturemap' | Transform the color data in CData so that
it conforms to the surface. |
'none' | Do not draw the faces. |
RGB triplets and hexadecimal color codes are useful for specifying custom colors.
An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range
[0,1]
; for example,[0.4 0.6 0.7]
.A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (
#
) followed by three or six hexadecimal digits, which can range from0
toF
. The values are not case sensitive. Thus, the color codes"#FF8800"
,"#ff8800"
,"#F80"
, and"#f80"
are equivalent.
Alternatively, you can specify some common colors by name. This table lists the named color options, the equivalent RGB triplets, and hexadecimal color codes.
Color Name | Short Name | RGB Triplet | Hexadecimal Color Code | Appearance |
---|---|---|---|---|
"red" | "r" | [1 0 0] | "#FF0000" | |
"green" | "g" | [0 1 0] | "#00FF00" | |
"blue" | "b" | [0 0 1] | "#0000FF" | |
"cyan"
| "c" | [0 1 1] | "#00FFFF" | |
"magenta" | "m" | [1 0 1] | "#FF00FF" | |
"yellow" | "y" | [1 1 0] | "#FFFF00" | |
"black" | "k" | [0 0 0] | "#000000" | |
"white" | "w" | [1 1 1] | "#FFFFFF" |
Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many types of plots.
RGB Triplet | Hexadecimal Color Code | Appearance |
---|---|---|
[0 0.4470 0.7410] | "#0072BD" | |
[0.8500 0.3250 0.0980] | "#D95319" | |
[0.9290 0.6940 0.1250] | "#EDB120" | |
[0.4940 0.1840 0.5560] | "#7E2F8E" | |
[0.4660 0.6740 0.1880] | "#77AC30" | |
[0.3010 0.7450 0.9330] | "#4DBEEE" | |
[0.6350 0.0780 0.1840] | "#A2142F" |
FaceAlpha
— Face transparency
1 (default) | scalar in range [0,1]
| 'flat'
| 'interp'
| 'texturemap'
Face transparency, specified as one of these values:
Scalar in range
[0,1]
— Use uniform transparency across all the faces. A value of1
is fully opaque and0
is completely transparent. Values between0
and1
are semitransparent. This option does not use the transparency values in theAlphaData
property.'flat'
— Use a different transparency for each face based on the values in theAlphaData
property. The transparency value at the first vertex determines the transparency for the entire face. First you must specify theAlphaData
property as a matrix the same size as theZData
property. TheFaceColor
property also must be set to'flat'
.'interp'
— Use interpolated transparency for each face based on the values inAlphaData
property. The transparency varies across each face by interpolating the values at the vertices. First you must specify theAlphaData
property as a matrix the same size as theZData
property. TheFaceColor
property also must be set to'interp'
.'texturemap'
— Transform the data inAlphaData
so that it conforms to the surface.
FaceLighting
— Effect of light objects on faces
'flat'
| 'gouraud'
| 'none'
Effect of light objects on faces, specified as one of these values:
'flat'
— Apply light uniformly across each face. Use this value to view faceted objects.'gouraud'
— Vary the light across the faces. Calculate the light at the vertices and then linearly interpolate the light across the faces. Use this value to view curved surfaces.'none'
— Do not apply light from light objects to the faces.
To add a light object to the axes, use the light
function.
Note
The 'phong'
value has been removed. Use 'gouraud'
instead.
Version History
Introduced before R2006a
See Also
Functions
Properties
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)