mldivide, \
x に対する線形方程式 Ax = B の求解
説明
例
入力引数
出力引数
ヒント
演算子
/
と演算子\
は、方程式B/A = (A'\B')'
によって相互に関連しています。A
が正方行列の場合には、A\B
はinv(A)*B
におおよそ等しくなりますが、MATLAB は別の方法でより確実にA\B
を処理します。A
のランクがA
の列数よりも小さい場合、x = A\B
は最小ノルム解であるとは限りません。最小ノルムの最小二乗解は、x =
またはlsqminnorm
(A,B)x =
を使用して計算できます。pinv
(A)*B線形システムを異なる右辺について効率的に複数回解くには、
decomposition
オブジェクトを使用します。decomposition
オブジェクトは繰り返して解を求める必要のある問題に適しています。これは、係数行列の分解を複数回実行する必要がないためです。
アルゴリズム
参照
[1] Gilbert, John R., and Tim Peierls. “Sparse Partial Pivoting in Time Proportional to Arithmetic Operations.” SIAM Journal on Scientific and Statistical Computing 9, no. 5 (September 1988): 862–874. https://doi.org/10.1137/0909058.
[2] Anderson, E., ed. LAPACK Users’ Guide. 3rd ed. Software, Environments, Tools. Philadelphia: Society for Industrial and Applied Mathematics, 1999. https://doi.org/10.1137/1.9780898719604.
[3] Davis, Timothy A. "Algorithm 832: UMFPACK V4.3 – an unsymmetric-pattern multifrontal method." ACM Transactions on Mathematical Software 30, no. 2 (June 2004): 196–199. https://doi.org/10.1145/992200.992206.
[4] Duff, Iain S. “MA57---a Code for the Solution of Sparse Symmetric Definite and Indefinite Systems.” ACM Transactions on Mathematical Software 30, no. 2 (June 2004): 118–144. https://doi.org/10.1145/992200.992202.
[5] Davis, Timothy A., John R. Gilbert, Stefan I. Larimore, and Esmond G. Ng. “Algorithm 836: COLAMD, a Column Approximate Minimum Degree Ordering Algorithm.” ACM Transactions on Mathematical Software 30, no. 3 (September 2004): 377–380. https://doi.org/10.1145/1024074.1024080.
[6] Amestoy, Patrick R., Timothy A. Davis, and Iain S. Duff. “Algorithm 837: AMD, an Approximate Minimum Degree Ordering Algorithm.” ACM Transactions on Mathematical Software 30, no. 3 (September 2004): 381–388. https://doi.org/10.1145/1024074.1024081.
[7] Chen, Yanqing, Timothy A. Davis, William W. Hager, and Sivasankaran Rajamanickam. “Algorithm 887: CHOLMOD, Supernodal Sparse Cholesky Factorization and Update/Downdate.” ACM Transactions on Mathematical Software 35, no. 3 (October 2008): 1–14. https://doi.org/10.1145/1391989.1391995.
[8] Davis, Timothy A. “Algorithm 915, SuiteSparseQR: Multifrontal Multithreaded Rank-Revealing Sparse QR Factorization.” ACM Transactions on Mathematical Software 38, no. 1 (November 2011): 1–22. https://doi.org/10.1145/2049662.2049670.