展開
MATLAB Coder™ Support Package for NVIDIA® Jetson™ and NVIDIA DRIVE® Platforms により、ハードウェア上に MATLAB 関数を展開できるようになります。関数は、ハードウェアのライブ接続がホスト コンピューターから切断された場合でも実行を続けるスタンドアロンの実行可能ファイルとして展開されます。
関数
GPIO
configurePin | Configure GPIO pin as digital input or digital output (R2021b 以降) |
readDigitalPin | Read logical value from GPIO input pin (R2021b 以降) |
showPins | Show diagram of GPIO pins (R2021b 以降) |
writeDigitalPin | Write logical value to GPIO output pin (R2021b 以降) |
周辺装置
audiocapture | Connection between audio input device and NVIDIA hardware (R2021a 以降) |
audioplayer | Connection between audio output device and NVIDIA hardware (R2021a 以降) |
capture | Capture data from audio device connected to NVIDIA hardware (R2021a 以降) |
play | Play audio from audio device connected to NVIDIA hardware (R2021a 以降) |
camera | Connection to USB or CSI camera |
getCameraList | Get a list of available cameras on the NVIDIA hardware |
listAudioDevices | Get a list of available audio devices on the NVIDIA hardware (R2021a 以降) |
image | Display image |
imageDisplay | NVIDIA display object |
snapshot | Capture RGB image from Camera |
updatePeripheralInfo | Scan for and update the list of peripherals connected to the target hardware |
velodynelidar | Connection to a Velodyne LiDAR sensor (R2022b 以降) |
read | Acquire point clouds from velodynelidar object
buffer (R2022b 以降) |
start | Start streaming point clouds from Velodyne LiDAR sensor (R2022b 以降) |
stop | Stop streaming point clouds from Velodyne LiDAR sensor (R2020b 以降) |
webcam | Connection to USB web camera |
ファイル操作
getFile | Transfer file from NVIDIA hardware to host computer |
putFile | Transfer file from host computer to target hardware |
deleteFile | Delete file on target hardware |
ユーティリティ
openShell | Open terminal on host computer to use a Linux shell on NVIDIA hardware |
system | Run commands in a Linux shell on the NVIDIA hardware |
getL4TVersion | Get the L4T version of the NVIDIA Jetson hardware |
getPdkorSdkVersion | Get the version number of the DriveWorks SDK installed on the NVIDIA DRIVE hardware |
getDisplayEnvironment | Get the display environment value used for redirecting the display on the target |
setDisplayEnvironment | Set the display environment value used for redirecting the display on the target |
setupCodegenContext | Select the target hardware to build code for from multiple live connection objects |
getLinuxVersion | Get information about the Linux environment on the target |
killApplication | Kill an application on the NVIDIA target by name |
killProcess | Kill a process on the NVIDIA target by ID |
runApplication | Launch an application on the NVIDIA target by name |
runExecutable | Launch an executable on the NVIDIA target by name |
workspaceDir | Get the build directory on the NVIDIA hardware |
プロセッサインザループ
setPILTimeout | Set the timeout value that PIL uses for reading data |
setPILPort | Set the TCP/IP port number used by the PIL execution |
getPILTimeout | Get the timeout value that PIL uses for reading data |
getPILPort | Get the TCP/IP port number used by the PIL execution |
トピック
MATLAB
- Build and Run an Executable on NVIDIA Hardware
Build and run an executable on NVIDIA hardware. - Build and Run an Executable on NVIDIA Hardware Using GPU Coder App
Use GPU Coder™ app to build and run an executable on NVIDIA hardware. - Read Video Files on NVIDIA Hardware
Generate CUDA® code for reading video files on the NVIDIA target by using thevideoReader
function. - Stop or Restart an Executable Running on NVIDIA Hardware
Stop or restart an executable running on the hardware. - Processor-In-The-Loop Execution from Command Line
Use PIL execution to verify the numerical behavior of the generated code at the MATLAB command line. - Processor-In-The-Loop Execution with the GPU Coder App
Use the GPU Coder app to verify the numerical behavior of the generated code. - Execution-Time Profiling for PIL
Why measure execution times for code generated from entry-point functions.
Simulink
- NVIDIA 組み込みボードのターゲット化 (GPU Coder)
ビルドして NVIDIA GPU ボードに展開する。 - 数値的等価性テスト (GPU Coder)
モデルと生成されたコードのシミュレーション結果を比較する。 - エクスターナル モードを使用したパラメーターの調整と信号の監視 (GPU Coder)
開発用コンピューターとターゲット ハードウェアの間の TCP/IP 通信チャネルで、パラメーターを調整し、信号を監視します。
注目の例
Deploy and Run Sobel Edge Detection with I/O on NVIDIA Jetson Nano
Deploy Sobel edge detection application that uses a Raspberry Pi Camera Module V2 and displays the edge detected output on the NVIDIA® Jetson™ Nano Hardware. The Sobel Edge Detection on NVIDIA Jetson Nano Using Raspberry Pi Camera Module V2 example showed how to capture image frames from the Raspberry Pi Camera Module V2 on an NVIDIA Jetson Nano hardware and process them in the MATLAB® environment. This example shows how to generate code for accessing I/O peripherals (camera and display) and perform processing on the NVIDIA Jetson Nano hardware.
Sobel Edge Detection on NVIDIA Jetson Nano Using Raspberry Pi Camera Module V2
Capture and process images from a Raspberry Pi® Camera Module V2 connected to the NVIDIA® Jetson™ Nano. The MATLAB® Coder™ Support Package for NVIDIA Jetson and NVIDIA DRIVE® Platforms allows you to capture images from the Camera Module V2 and bring them into the MATLAB environment for processing. In this example you learn how to develop a Sobel edge detection algorithm by using this capability.
Semantic Segmentation on NVIDIA DRIVE
Generate and deploy a CUDA® executable for an image segmentation application that uses deep learning. It uses the MATLAB® Coder™ Support Package for NVIDIA® Jetson™ and NVIDIA DRIVE™ Platforms to deploy the executable on the NVIDIA DRIVE™ platform. This example performs code generation on the host computer and builds the generated code on the target platform by using remote build capability of the support package. For more information, see セマンティック セグメンテーション ネットワークのコード生成 (GPU Coder).
Processor-in-the-Loop Execution on NVIDIA Targets Using GPU Coder
How the MATLAB® Coder™ Support Package for NVIDIA® Jetson™ and NVIDIA DRIVE™ Platforms enables the GPU Coder™ product to run PIL execution on NVIDIA DRIVE and Jetson hardware platforms. This example uses the GPU Code generation for fog rectification example from GPU Coder to demonstrate PIL execution. For more information, see 霧の修正 (GPU Coder).
NVIDIA Jetson TX2 開発者キットで不均一な背景の照度を除去するトップハット フィルター処理
この例では、GPU Coder™ Support Package for NVIDIA GPUs を使用して、Image Processing Toolbox™ アルゴリズムを NVIDIA® Jetson TX2 ボードに展開する方法を説明します。この概念を説明するための例として、関数 imtophat
(Image Processing Toolbox) を使用します。この関数は、グレースケール イメージに対してモルフォロジー トップハット フィルター処理を実行します。トップハット フィルター処理を実行するとイメージのモルフォロジー オープニングが計算され (imopen
(Image Processing Toolbox) を使用)、次に元のイメージから結果が減算されます。生成された CUDA® コードでは、GPU での演算を高速化するために共有メモリが使用されます。
(GPU Coder)
NVIDIA Jetson TX2 プラットフォームでの Web カメラ イメージの展開と分類
この例では、GPU Coder™ Support Package for NVIDIA GPUs を使用して、DAGNetwork オブジェクトから CUDA® コードを生成し、その生成コードを NVIDIA® Jetson® TX2 ボードに展開する方法を説明します。この例では、resnet50 深層学習ネットワークを使用して、USB Web カメラのビデオ ストリームのイメージを分類します。
(GPU Coder)
Deploy and Run Fog Rectification for Video on NVIDIA Jetson
Generate and deploy a CUDA® executable for a video-based fog rectification application. The example shows the deployable code generation capabilities that the MATLAB® Coder™ Support Package for NVIDIA Jetson and NVIDIA DRIVE Platforms provides for the MATLAB VideoReader
function. This example generates a CUDA application that reads the contents of a video file, performs fog rectification operation, and displays the output video on the NVIDIA® hardware.
Deploy and Classify Webcam Images on NVIDIA Jetson Platform from Simulink
Deploy a Simulink® model on the NVIDIA® Jetson™ board for classifying webcam images. This example classifies images from a webcam in real-time by using the pretrained deep convolutional neural network, ResNet-50
. The Simulink model in the example uses the camera and display blocks from the MATLAB® Coder™ Support Package for NVIDIA Jetson and NVIDIA DRIVE™ Platforms to capture the live video stream from a webcam and display the prediction results on a monitor connected to the Jetson platform.
Keyword Spotting in Audio Using MFCC and LSTM Networks on NVIDIA Embedded Hardware from Simulink
Deploy a Simulink® model on the NVIDIA® Jetson™ board for keyword spotting in audio data. This example identifies the keyword(YES
) in the input audio data using Mel Frequency Cepstral Coefficients (MFCC) and a pretrained Bidirectional Long Short-Term Memory (BiLSTM) network.
CAN Bus Communication on NVIDIA Jetson TX2 in Simulink
Deploy a Simulink® model that uses CAN communication for a deep learning application. The Simulink model in this example uses the CAN Transmit
and CAN Receive
blocks from the MATLAB® Coder™ Support Package for NVIDIA® Jetson® and NVIDIA DRIVE® Platforms to model a CAN bus system on the Jetson TX2 platform. The model uses the CAN bus to transmit the recognized traffic sign objects in a video frame from one CAN node to another CAN node.
Stream Images from NVIDIA Jetson Xavier NX using Robot Operating System (ROS)
Stream images captured from a webcam on NVIDIA® Jetson Xavier NX board to the host computer using ROS communication interface.
MATLAB コマンド
次の MATLAB コマンドに対応するリンクがクリックされました。
コマンドを MATLAB コマンド ウィンドウに入力して実行してください。Web ブラウザーは MATLAB コマンドをサポートしていません。
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list:
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)