Skip to content
MathWorks - Mobile View
  • MathWorks アカウントへのサインインMathWorks アカウントへのサインイン
  • Access your MathWorks Account
    • マイ アカウント
    • コミュニティのプロファイル
    • ライセンスを関連付ける
    • サインアウト
  • 製品
  • ソリューション
  • アカデミア
  • サポート
  • コミュニティ
  • イベント
  • MATLAB を入手する
MathWorks
  • 製品
  • ソリューション
  • アカデミア
  • サポート
  • コミュニティ
  • イベント
  • MATLAB を入手する
  • MathWorks アカウントへのサインインMathWorks アカウントへのサインイン
  • Access your MathWorks Account
    • マイ アカウント
    • コミュニティのプロファイル
    • ライセンスを関連付ける
    • サインアウト

ビデオ・Webセミナー

  • MathWorks
  • ビデオ
  • ビデオ ホーム
  • 検索
  • ビデオ ホーム
  • 検索
  • 営業へのお問い合わせ
  • 評価版
37:08 Video length is 37:08.
  • Description
  • Related Resources

How to Train Your Robot (with Deep Reinforcement Learning)

Artificial Intelligence (AI) is transforming automated systems, from voice assistants and chatbots, to self-driving cars and robots. AI systems have the capability to learn and adapt as they incorporate experiences, in order to enhance their predictive abilities.

Deep learning is a subset of machine learning, in which artificial neural networks, algorithms inspired by the human brain, learn from large amounts of data. Deep learning has disrupted the world of machine learning, allowing deep neural networks to achieve near or better accuracy than humans in a variety of tasks such as image classification, speech and hand writing recognition, and autonomous driving.

Reinforcement learning is revolutionizing the applications of deep learning –from playing and beating the best human players at video games to training robots to accomplish complex, technical tasks. Reinforcement learning involves learning what to do (mapping situations to actions) to maximize a numerical reward signal. It has successfully trained computer programs to play games (such as Go and StarCraft II) better than the world’s best human players. These programs find the best action to take in games with large state and action spaces, imperfect world information, and uncertainty around how short-term actions pay off in the long run. Engineers and scientists face the same types of challenges when designing real systems like controllers. Can reinforcement learning also help solve complex control problems like making a robot walk or driving an autonomous car?

In this talk, we aim to answer this question by explaining what reinforcement learning is in the context of traditional control problems, showing how to generate simulation data, setting up and solving the reinforcement learning problem, and allowing a virtual robot to learn complex tasks, like walking, using deep reinforcement learning.

Recorded at Big Things Conference 2019.

Related Products

  • Reinforcement Learning Toolbox
  • Deep Learning Toolbox
  • GPU Coder
  • MATLAB
  • Simulink

Learn More

Download code

3 Ways to Speed Up Model Predictive Controllers

Read white paper

A Practical Guide to Deep Learning: From Data to Deployment

Read ebook

Bridging Wireless Communications Design and Testing with MATLAB

Read white paper

Deep Learning and Traditional Machine Learning: Choosing the Right Approach

Read ebook

Hardware-in-the-Loop Testing for Power Electronics Control Design

Read white paper

Predictive Maintenance with MATLAB

Read ebook

Electric Vehicle Modeling and Simulation - Architecture to Deployment : Webinar Series

Register for Free

How much do you know about power conversion control?

Start quiz
Related Information
Related Information
Get Started with Reinforcement Learning Onramp

Feedback

Featured Product

Reinforcement Learning Toolbox

  • Request Trial
  • Get Pricing

Up Next:

36:42
Simulink: Tips and Tricks

Related Videos:

45:02
Mobile Robot Simulation for Collision Avoidance with...
3:29
German Aerospace Center (DLR) Robotics and Mechatronics...
20:44
Renault Model-Based Design Power Train Control Development...
30:58
Rapid Algorithm Development for Planning and Control of an...

View more related videos

MathWorks - Domain Selector

Select a Web Site

Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .

  • Switzerland (English)
  • Switzerland (Deutsch)
  • Switzerland (Français)
  • 中国 (简体中文)
  • 中国 (English)

You can also select a web site from the following list:

How to Get Best Site Performance

Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.

Americas

  • América Latina (Español)
  • Canada (English)
  • United States (English)

Europe

  • Belgium (English)
  • Denmark (English)
  • Deutschland (Deutsch)
  • España (Español)
  • Finland (English)
  • France (Français)
  • Ireland (English)
  • Italia (Italiano)
  • Luxembourg (English)
  • Netherlands (English)
  • Norway (English)
  • Österreich (Deutsch)
  • Portugal (English)
  • Sweden (English)
  • Switzerland
    • Deutsch
    • English
    • Français
  • United Kingdom (English)

Asia Pacific

  • Australia (English)
  • India (English)
  • New Zealand (English)
  • 中国
    • 简体中文Chinese
    • English
  • 日本Japanese (日本語)
  • 한국Korean (한국어)

Contact your local office

  • 営業へのお問い合わせ
  • 評価版

MathWorks

Accelerating the pace of engineering and science

MathWorksはエンジニアや研究者向け数値解析ソフトウェアのリーディングカンパニーです。

ディスカバー…

製品を見る

  • MATLAB
  • Simulink
  • 学生向けソフトウェア
  • ハードウェア サポート
  • File Exchange

製品評価版の入手または製品の購入

  • ダウンロード
  • 評価版ソフトウェア
  • 営業へのお問い合わせ
  • 価格とライセンス
  • MathWorksストア

使い方を学ぶ

  • ドキュメンテーション
  • チュートリアル
  • 例
  • ビデオ・Webセミナー
  • トレーニング

サポートを受ける

  • インストールのヘルプ
  • MATLAB Answers
  • 技術コンサルティング
  • ライセンスセンター
  • サポートへのお問い合わせ

MathWorks について

  • 採用情報
  • ニュースルーム
  • 社会貢献
  • ユーザー事例
  • MathWorks について
  • Select a Web Site United States
  • トラストセンター
  • 商標
  • プライバシー ポリシー
  • 違法コピー防止
  • アプリケーション ステータス

© 1994-2022 The MathWorks, Inc.

  • Facebook
  • Twitter
  • Instagram
  • YouTube
  • LinkedIn
  • RSS

MATLAB を語ろう