Fixed-Point Made Easy for FPGA Programming
One of the biggest challenges in FPGA programming is the process of quantizing mathematical operations to fixed-point for more efficient implementation.
This session teaches the fundamentals of the fixed-point number system and fixed-point arithmetic, along with considerations for targeting popular FPGA devices. These concepts are then reinforced through practical demonstrations, capped by walking through the process of quantizing a signal processing design.
Topics include:
- Fixed-point theory
- Fixed-point number system
- Mathematical range
- Quantization error in the time and frequency domains
- Common functions
- Arithmetic: square root, reciprocal, log2
- Trigonometry: cosine, sine, atan2
- Signal processing: FIR, FFT
- FPGA considerations
- Targeting Xilinx and Intel devices
- Maintaining precision
- Using native floating point for full-precision calculations
- Example: communications packet detection
- Matched filter
- Peak detection
- FPGA optimizations
Published: 11 May 2020
Featured Product
Fixed-Point Designer
Up Next:
Related Videos:
Web サイトの選択
Web サイトを選択すると、翻訳されたコンテンツにアクセスし、地域のイベントやサービスを確認できます。現在の位置情報に基づき、次のサイトの選択を推奨します:
また、以下のリストから Web サイトを選択することもできます。
最適なサイトパフォーマンスの取得方法
中国のサイト (中国語または英語) を選択することで、最適なサイトパフォーマンスが得られます。その他の国の MathWorks のサイトは、お客様の地域からのアクセスが最適化されていません。
南北アメリカ
- América Latina (Español)
- Canada (English)
- United States (English)
ヨーロッパ
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
アジア太平洋地域
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)