# parzenwin

Parzen (de la Vallée Poussin) window

## Syntax

``w = parzenwin(L)``

## Description

example

````w = parzenwin(L)` returns the `L`-point Parzen (de la Vallée Poussin) window.```

## Examples

collapse all

Compare 64-point Parzen and Gaussian windows. Display the result using `wvtool`.

```gw = gausswin(64); pw = parzenwin(64); wvtool(gw,pw)```

## Input Arguments

collapse all

Window length, specified as a real positive scalar.

Data Types: `single` | `double` | `int8` | `int16` | `int32` | `int64` | `uint8` | `uint16` | `uint32` | `uint64`

## Output Arguments

collapse all

Parzen window, returned as a column vector of length `L`. For the equation that defines the Parzen window, see Algorithms.

## Algorithms

Parzen windows are piecewise-cubic approximations of Gaussian windows. Parzen window sidelobes fall off as 1/ω4.

This equation defines the `N`–point Parzen window over the interval $-\frac{\left(N-1\right)}{2}\le n\le \frac{\left(N-1\right)}{2}$:

`$w\left(n\right)=\left\{\begin{array}{cc}1-6{\left(\frac{|n|}{N/2}\right)}^{2}+6{\left(\frac{|n|}{N/2}\right)}^{3}& 0\le |n|\le \left(N-1\right)/4\\ 2{\left(1-\frac{|n|}{N/2}\right)}^{3}& \left(N-1\right)/4<|n|\le \left(N-1\right)/2\end{array}$`

## References

[1] Harris, Fredric J. "On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform." Proceedings of the IEEE®. Vol. 66, January 1978, pp. 51–83.

## Version History

Introduced before R2006a