corrmtx
自己相関行列の推定に使用するデータ行列
説明
例
入力引数
出力引数
アルゴリズム
関数 corrmtx で計算されるテプリッツ データ行列は、選択したメソッドによって異なります。自己相関 (既定) 法により決定される行列は次のとおりです。
この行列で、m は corrmtx への入力引数 m と同じで、n は length(x) になります。この行列の変動値を使って返される、各メソッドの corrmtx の出力 H は次のとおりです。
'autocorrelation'— (既定)H= H'prewindowed'—Hは H の n 行 (m + 1) 列の部分行列で、最初の行が [x(1) … 0]、最後の行が [x(n) … x(n – m)] です。'postwindowed'—Hは H の n 行 (m + 1) 列の部分行列で、最初の行が [x(m + 1) … x(1)]、最後の行が [0 … x(n)] です。'covariance'—Hは、H の (n - m) 行 (m + 1) 列の部分行列に を掛けたもので、最初の行が [x(m + 1) … x(1)]、最後の行が [x(n) … x(n – m)] です。'modified'—Hは次で定義される 2(n – m)-by-(m + 1) の行列 Hmod です。
参照
[1] Marple, S. Lawrence. Digital Spectral Analysis: With Applications. Prentice-Hall Signal Processing Series. Englewood Cliffs, N.J: Prentice-Hall, 1987.
拡張機能
バージョン履歴
R2006a より前に導入
