Main Content

fsurf

Plot 3-D surface

  • Plot 3-D surface

Description

fsurf(f) creates a surface plot of the function z = f(x,y) over the default interval [-5 5] for x and y.

example

fsurf(f,xyinterval) plots over the specified interval. To use the same interval for both x and y, specify xyinterval as a two-element vector of the form [min max]. To use different intervals, specify a four-element vector of the form [xmin xmax ymin ymax].

fsurf(funx,funy,funz) plots the parametric surface defined by x = funx(u,v), y = funy(u,v), z = funz(u,v) over the default interval [-5 5] for u and v.

example

fsurf(funx,funy,funz,uvinterval) plots over the specified interval. To use the same interval for both u and v, specify uvinterval as a two-element vector of the form [min max]. To use different intervals, specify a four-element vector of the form [umin umax vmin vmax].

fsurf(___,LineSpec) sets the line style, marker symbol, and surface color. For example, '-r' specifies red lines. Use this option after any of the previous input argument combinations.

fsurf(___,Name,Value) specifies surface properties using one or more name-value pair arguments. Use this option after any of the input argument combinations in the previous syntaxes.

example

fsurf(ax,___) plots into the axes specified by ax instead of the current axes (gca).

fs = fsurf(___) returns a FunctionSurface object or ParameterizedFunctionSurface object, depending on the inputs. Use fs to query and modify properties of a specific surface. For a list of properties, see FunctionSurface Properties or ParameterizedFunctionSurface Properties.

example

Examples

collapse all

Plot the expression sin(x)+cos(y) over the default interval -5<x<5 and -5<y<5.

fsurf(@(x,y) sin(x)+cos(y))

Figure contains an axes object. The axes object contains an object of type functionsurface.

Plot the piecewise expression

erf(x)+cos(y)-5<x<0sin(x)+cos(y)0<x<5

over -5<y<5.

Specify the plotting interval as the second input argument of fsurf. When you plot multiple surfaces over different intervals in the same axes, the axis limits adjust to include all the data.

f1 = @(x,y) erf(x)+cos(y);
fsurf(f1,[-5 0 -5 5])
hold on
f2 = @(x,y) sin(x)+cos(y);
fsurf(f2,[0 5 -5 5])
hold off

Figure contains an axes object. The axes object contains 2 objects of type functionsurface.

Plot the parameterized surface

x=rcos(u)sin(v)y=rsin(u)sin(v)z=rcos(v)wherer=2+sin(7u+5v)

for 0<u<2π and 0<v<π. Add light to the surface using camlight.

r = @(u,v) 2 + sin(7.*u + 5.*v);
funx = @(u,v) r(u,v).*cos(u).*sin(v);
funy = @(u,v) r(u,v).*sin(u).*sin(v);
funz = @(u,v) r(u,v).*cos(v);
fsurf(funx,funy,funz,[0 2*pi 0 pi]) 
camlight

Figure contains an axes object. The axes object contains an object of type parameterizedfunctionsurface.

For x and y from -2π to 2π, plot the 3-D surface ysin(x)-xcos(y). Add a title and axis labels and display the axes outline.

fsurf(@(x,y) y.*sin(x)-x.*cos(y),[-2*pi 2*pi])
title('ysin(x) - xcos(y) for x and y in [-2\pi,2\pi]')
xlabel('x');
ylabel('y');
zlabel('z');
box on

Figure contains an axes object. The axes object with title ysin(x) blank - blank xcos(y) blank for blank x blank and blank y blank in blank [- 2 pi , 2 pi ], xlabel x, ylabel y contains an object of type functionsurface.

Set the x-axis tick values and associated labels using the XTickLabel and XTick properties of axes object. Access the axes object using gca. Similarly, set the y-axis tick values and associated labels.

ax = gca;
ax.XTick = -2*pi:pi/2:2*pi;
ax.XTickLabel = {'-2\pi','-3\pi/2','-\pi','-\pi/2','0',...
    '\pi/2','\pi','3\pi/2','2\pi'};

ax.YTick = -2*pi:pi/2:2*pi;
ax.YTickLabel = {'-2\pi','-3\pi/2','-\pi','-\pi/2','0',...
    '\pi/2','\pi','3\pi/2','2\pi'};

Figure contains an axes object. The axes object with title ysin(x) blank - blank xcos(y) blank for blank x blank and blank y blank in blank [- 2 pi , 2 pi ], xlabel x, ylabel y contains an object of type functionsurface.

Plot the parametric surface x=usin(v), y=-ucos(v), z=v with different line styles for different values of v. For -5<v<-2, use a dashed green line for the surface edges. For -2<v<2, turn off the edges by setting the EdgeColor property to 'none'.

funx = @(u,v) u.*sin(v);
funy = @(u,v) -u.*cos(v);
funz = @(u,v) v;

fsurf(funx,funy,funz,[-5 5 -5 -2],'--','EdgeColor','g')
hold on
fsurf(funx,funy,funz,[-5 5 -2 2],'EdgeColor','none')
hold off

Figure contains an axes object. The axes object contains 2 objects of type parameterizedfunctionsurface.

Plot the parametric surface

x=e-|u|/10sin(5|v|)y=e-|u|/10cos(5|v|)z=u.

Assign the parameterized function surface object to a variable.

x = @(u,v) exp(-abs(u)/10).*sin(5*abs(v));
y = @(u,v) exp(-abs(u)/10).*cos(5*abs(v));
z = @(u,v) u;
fs = fsurf(x,y,z)

Figure contains an axes object. The axes object contains an object of type parameterizedfunctionsurface.

fs = 
  ParameterizedFunctionSurface with properties:

    XFunction: @(u,v)exp(-abs(u)/10).*sin(5*abs(v))
    YFunction: @(u,v)exp(-abs(u)/10).*cos(5*abs(v))
    ZFunction: @(u,v)u
    EdgeColor: [0 0 0]
    LineStyle: '-'
    FaceColor: 'interp'

  Use GET to show all properties

Change the plotting interval for u to [-30 30] by setting the URange property of object. Add transparency to the surface by setting the FaceAlpha property to a value between 0 (transparent) and 1 (opaque).

fs.URange = [-30 30];
fs.FaceAlpha = .5;

Figure contains an axes object. The axes object contains an object of type parameterizedfunctionsurface.

Show contours below a surface plot by setting the 'ShowContours' option to 'on'.

f = @(x,y) 3*(1-x).^2.*exp(-(x.^2)-(y+1).^2)...
    - 10*(x/5 - x.^3 - y.^5).*exp(-x.^2-y.^2)...
    - 1/3*exp(-(x+1).^2 - y.^2);
fsurf(f,[-3 3],'ShowContours','on')

Figure contains an axes object. The axes object contains an object of type functionsurface.

Control the resolution of a surface plot using the 'MeshDensity' option. Increasing 'MeshDensity' can make smoother, more accurate plots while decreasing it can increase plotting speed.

Create two plots in a tiled chart layout. In the first plot, display the parametric surface x=sin(s), y=cos(s), z=(t/10)sin(1/s). The surface has a large gap. Fix this issue by increasing the 'MeshDensity' to 40 in the second plot. fsurf fills the gap, showing that by increasing 'MeshDensity' you increased the resolution.

tiledlayout(2,1)
nexttile
fsurf(@(s,t) sin(s), @(s,t) cos(s), @(s,t) t/10.*sin(1./s))
view(-172,25)
title('Default MeshDensity = 35')

nexttile
fsurf(@(s,t) sin(s), @(s,t) cos(s),...
    @(s,t) t/10.*sin(1./s),'MeshDensity',40)

view(-172,25)
title('Increased MeshDensity = 40')

Figure contains 2 axes objects. Axes object 1 with title Default MeshDensity = 35 contains an object of type parameterizedfunctionsurface. Axes object 2 with title Increased MeshDensity = 40 contains an object of type parameterizedfunctionsurface.

Input Arguments

collapse all

3-D function to plot, specified as a function handle to a named or anonymous function.

Specify a function of the form z = f(x,y). The function must accept two matrix input arguments and return a matrix output argument of the same size. Use array operators instead of matrix operators for the best performance. For example, use .* (times) instead of * (mtimes).

Example: f = @(x,y) sin(x) + cos(y);

Plotting interval for x and y, specified in one of these forms:

  • Vector of form [min max] — Use the interval [min max] for both x and y

  • Vector of form [xmin xmax ymin ymax] — Use the interval [xmin xmax] for x and [ymin ymax] for y.

Parametric function for x coordinates, specified as a function handle to a named or anonymous function.

Specify a function of the form x = funx(u,v). The function must accept two matrix input arguments and return a matrix output argument of the same size. Use array operators instead of matrix operators for the best performance. For example, use .* (times) instead of * (mtimes).

Example: funx = @(u,v) u.*sin(v);

Parametric function for y coordinates, specified as a function handle to a named or anonymous function.

Specify a function of the form y = funy(u,v). The function must accept two matrix input arguments and return a matrix output argument of the same size. Use array operators instead of matrix operators for the best performance. For example, use .* (times) instead of * (mtimes).

Example: funy = @(t) @(u,v) -u.*cos(v);

Parametric function for z coordinates, specified as a function handle to a named or anonymous function.

Specify a function of the form z = funz(u,v). The function must accept two matrix input arguments and return a matrix output argument of the same size. Use array operators instead of matrix operators for the best performance. For example, use .* (times) instead of * (mtimes).

Example: funz = @(u,v) v;

Plotting interval for u and v, specified in one of these forms:

  • Vector of form [min max] — Use the interval [min max] for both u and v

  • Vector of form [umin umax vmin vmax] — Use the interval [umin umax] for u and [vmin vmax] for v.

Axes object. If you do not specify an axes object, then fsurf uses the current axes.

Line style, marker, and color, specified as a string scalar or character vector containing symbols. The symbols can appear in any order. You do not need to specify all three characteristics (line style, marker, and color). For example, if you omit the line style and specify the marker, then the plot shows only the marker and no line.

Example: "--or" is a red dashed line with circle markers.

Line StyleDescriptionResulting Line
"-"Solid line

Sample of solid line

"--"Dashed line

Sample of dashed line

":"Dotted line

Sample of dotted line

"-."Dash-dotted line

Sample of dash-dotted line, with alternating dashes and dots

MarkerDescriptionResulting Marker
"o"Circle

Sample of circle marker

"+"Plus sign

Sample of plus sign marker

"*"Asterisk

Sample of asterisk marker

"."Point

Sample of point marker

"x"Cross

Sample of cross marker

"_"Horizontal line

Sample of horizontal line marker

"|"Vertical line

Sample of vertical line marker

"square"Square

Sample of square marker

"diamond"Diamond

Sample of diamond marker

"^"Upward-pointing triangle

Sample of upward-pointing triangle marker

"v"Downward-pointing triangle

Sample of downward-pointing triangle marker

">"Right-pointing triangle

Sample of right-pointing triangle marker

"<"Left-pointing triangle

Sample of left-pointing triangle marker

"pentagram"Pentagram

Sample of pentagram marker

"hexagram"Hexagram

Sample of hexagram marker

Color NameShort NameRGB TripletAppearance
"red""r"[1 0 0]

Sample of the color red

"green""g"[0 1 0]

Sample of the color green

"blue""b"[0 0 1]

Sample of the color blue

"cyan" "c"[0 1 1]

Sample of the color cyan

"magenta""m"[1 0 1]

Sample of the color magenta

"yellow""y"[1 1 0]

Sample of the color yellow

"black""k"[0 0 0]

Sample of the color black

"white""w"[1 1 1]

Sample of the color white

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Example: 'Marker','o','MarkerFaceColor','red'

The properties list here are only a subset. For a full list, see FunctionSurface Properties or ParameterizedFunctionSurface Properties.

Number of evaluation points per direction, specified as a number. The default is 35. Because fsurf objects use adaptive evaluation, the actual number of evaluation points is greater.

Example: 100

Display contour plot under plot, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use the value of this property as a logical value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState.

Line color, specified as 'interp', an RGB triplet, a hexadecimal color code, a color name, or a short name. The default RGB triplet value of [0 0 0] corresponds to black. The 'interp' value colors the edges based on the ZData values.

For a custom color, specify an RGB triplet or a hexadecimal color code.

  • An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range [0,1], for example, [0.4 0.6 0.7].

  • A hexadecimal color code is a string scalar or character vector that starts with a hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case sensitive. Therefore, the color codes "#FF8800", "#ff8800", "#F80", and "#f80" are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options, the equivalent RGB triplets, and hexadecimal color codes.

Color NameShort NameRGB TripletHexadecimal Color CodeAppearance
"red""r"[1 0 0]"#FF0000"

Sample of the color red

"green""g"[0 1 0]"#00FF00"

Sample of the color green

"blue""b"[0 0 1]"#0000FF"

Sample of the color blue

"cyan" "c"[0 1 1]"#00FFFF"

Sample of the color cyan

"magenta""m"[1 0 1]"#FF00FF"

Sample of the color magenta

"yellow""y"[1 1 0]"#FFFF00"

Sample of the color yellow

"black""k"[0 0 0]"#000000"

Sample of the color black

"white""w"[1 1 1]"#FFFFFF"

Sample of the color white

"none"Not applicableNot applicableNot applicableNo color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB® uses in many types of plots.

RGB TripletHexadecimal Color CodeAppearance
[0 0.4470 0.7410]"#0072BD"

Sample of RGB triplet [0 0.4470 0.7410], which appears as dark blue

[0.8500 0.3250 0.0980]"#D95319"

Sample of RGB triplet [0.8500 0.3250 0.0980], which appears as dark orange

[0.9290 0.6940 0.1250]"#EDB120"

Sample of RGB triplet [0.9290 0.6940 0.1250], which appears as dark yellow

[0.4940 0.1840 0.5560]"#7E2F8E"

Sample of RGB triplet [0.4940 0.1840 0.5560], which appears as dark purple

[0.4660 0.6740 0.1880]"#77AC30"

Sample of RGB triplet [0.4660 0.6740 0.1880], which appears as medium green

[0.3010 0.7450 0.9330]"#4DBEEE"

Sample of RGB triplet [0.3010 0.7450 0.9330], which appears as light blue

[0.6350 0.0780 0.1840]"#A2142F"

Sample of RGB triplet [0.6350 0.0780 0.1840], which appears as dark red

Line style, specified as one of the options listed in this table.

Line StyleDescriptionResulting Line
"-"Solid line

Sample of solid line

"--"Dashed line

Sample of dashed line

":"Dotted line

Sample of dotted line

"-."Dash-dotted line

Sample of dash-dotted line, with alternating dashes and dots

"none"No lineNo line

Line width, specified as a positive value in points, where 1 point = 1/72 of an inch. If the line has markers, then the line width also affects the marker edges.

The line width cannot be thinner than the width of a pixel. If you set the line width to a value that is less than the width of a pixel on your system, the line displays as one pixel wide.

Marker symbol, specified as one of the values listed in this table. By default, the object does not display markers. Specifying a marker symbol adds markers at each data point or vertex.

MarkerDescriptionResulting Marker
"o"Circle

Sample of circle marker

"+"Plus sign

Sample of plus sign marker

"*"Asterisk

Sample of asterisk marker

"."Point

Sample of point marker

"x"Cross

Sample of cross marker

"_"Horizontal line

Sample of horizontal line marker

"|"Vertical line

Sample of vertical line marker

"square"Square

Sample of square marker

"diamond"Diamond

Sample of diamond marker

"^"Upward-pointing triangle

Sample of upward-pointing triangle marker

"v"Downward-pointing triangle

Sample of downward-pointing triangle marker

">"Right-pointing triangle

Sample of right-pointing triangle marker

"<"Left-pointing triangle

Sample of left-pointing triangle marker

"pentagram"Pentagram

Sample of pentagram marker

"hexagram"Hexagram

Sample of hexagram marker

"none"No markersNot applicable

Marker size, specified as a positive value in points, where 1 point = 1/72 of an inch.

Output Arguments

collapse all

One or more FunctionSurface or ParameterizedFunctionSurface objects, returned as a scalar or a vector.

  • If you use the fsurf(f) syntax or a variation of this syntax, then fsurf returns FunctionSurface objects.

  • If you use the fsurf(funx,funy,funz) syntax or a variation of this syntax, then fsurf returns ParameterizedFunctionSurface objects.

You can use these objects to query and modify properties of a specific surface. For a list of properties, see FunctionSurface Properties and ParameterizedFunctionSurface Properties.

Version History

Introduced in R2016a