このページの翻訳は最新ではありません。ここをクリックして、英語の最新版を参照してください。
データの解析
関数
bode | 周波数応答、または振幅と位相データのボード線図 |
bodemag | 周波数応答の振幅のみのボード線図 |
plot | Plot input and output channels of iddata object |
advice | Analysis and recommendations for data or estimated linear models |
delayest | データからの時間遅延 (むだ時間) の推定 |
isreal | モデル パラメーターまたはデータ値が実数かどうかを判別 |
realdata | Determine whether iddata is based on
real-valued signals |
feedback | フィードバック データの可能性の特定 |
pexcit | Level of excitation of input signals |
impulseest | Nonparametric impulse response estimation |
etfe | 経験的な伝達関数とピリオドグラムの推定 |
spa | スペクトル解析を使用した固定の周波数分解能による周波数応答の推定 |
spafdr | Estimate frequency response and spectrum using spectral analysis with frequency-dependent resolution |
iddataPlotOptions | Option set for plot when plotting data contained in an
iddata object |
例および使用方法
- How to Plot Data in the App
After importing data into the System Identification app, as described in データの表現, you can plot the data.
- How to Plot Data at the Command Line
The following table summarizes the commands available for plotting time-domain, frequency-domain, and frequency-response data.
- How to Analyze Data Using the advice Command
You can use the
advice
command to analyze time- or frequency- domain data before estimating a model. The resulting report informs you about the possible need to preprocess the data and identifies potential restrictions on the model accuracy. You should use these recommendations in combination with plotting the data and validating the models estimated from this data. - Identify Delay Using Transient-Response Plots
You can use transient-response plots to estimate the input delay, or dead time, of linear systems. Input delay represents the time it takes for the output to respond to the input.
概念
- Is Your Data Ready for Modeling?
Before you start estimating models from data, you should check your data for the presence of any undesirable characteristics. For example, you might plot the data to identify drifts and outliers. You plot analysis might lead you to preprocess your data before model estimation.