Main Content

自動微分

深層学習の層、ネットワーク、学習ループ、および損失関数のカスタマイズ

ほとんどのタスクでは、組み込み層を使用できます。目的のタスクに必要な組み込み層が用意されていない場合、独自のカスタム層を定義できます。学習可能なパラメーターと状態パラメーターを使用してカスタム層を定義できます。カスタム層を定義した後、その層の有効性、GPU 互換性、定義した勾配の出力の正しさをチェックできます。サポートされている層の一覧については、深層学習層の一覧を参照してください。

タスクに必要な学習オプションが関数 trainingOptions に用意されていない場合、または関数 trainnet がサポートしていない損失関数がある場合は、カスタム学習ループを定義できます。層のネットワークとして指定できないモデルの場合は、モデルを関数として定義できます。詳細については、カスタム学習ループ、損失関数、およびネットワークの定義を参照してください。

カテゴリ

注目の例