tzero
Invariant zeros of linear system
Description
returns
the invariant zeros of MIMO dynamic
system, z
= tzero(sys
)sys
. If sys
is a minimal realization, the
invariant zeros coincide with the transmission zeros of
sys
.
returns the invariant
zeros of the state-space model described by matrices A,
B, C, D, and
E.z
= tzero(A,B,C,D,E
)
Examples
Input Arguments
Output Arguments
More About
Tips
You can use the syntax
z = tzero(A,B,C,D,E)
to find the uncontrollable or unobservable modes of a state-space model. WhenC
andD
are empty or zero,tzero
returns the uncontrollable modes of(A-sE,B)
. Similarly, whenB
andD
are empty or zero,tzero
returns the unobservable modes of(C,A-sE)
. For an example, see Identify Unobservable and Uncontrollable Modes of MIMO Model.
Algorithms
tzero
is based on SLICOT routines AB08ND, AB08NZ, AG08BD, and AG08BZ.
tzero
implements the algorithms in [1] and [2].
References
[1] Emami-Naeini, A. and P. Van Dooren, "Computation of Zeros of Linear Multivariable Systems," Automatica, 18 (1982), pp. 415–430.
[2] Misra, P, P. Van Dooren, and A. Varga, "Computation of Structural Invariants of Generalized State-Space Systems," Automatica, 30 (1994), pp. 1921-1936.
Version History
Introduced in R2012a