このページの翻訳は最新ではありません。ここをクリックして、英語の最新版を参照してください。
templateSVM
サポート ベクター マシン テンプレート
説明
は、1 つ以上の名前と値のペアの引数で指定された追加オプションを使用してテンプレートを返します。t
= templateSVM(Name,Value
)
たとえば、ボックス制約、カーネル関数または予測子を標準化するかを指定します。
コマンド ウィンドウに t
を表示する場合、すべてのオプションは、名前と値のペア引数を使用して指定する場合を除き、空 ([]
) で表示されます。学習中、空のオプションに既定値が使用されます。
例
入力引数
出力引数
ヒント
既定では、効率を向上させるため、fitcecoc
はすべての線形 SVM バイナリ学習器の Alpha
、SupportVectorLabels
および SupportVectors
プロパティを空にします。fitcecoc
は、Alpha
ではなく Beta
をモデル表示で出力します。
Alpha
、SupportVectorLabels
および SupportVectors
を保存するには、サポート ベクターを fitcecoc
に保存するよう指定する線形 SVM テンプレートを渡します。たとえば、次のように入力します。
t = templateSVM('SaveSupportVectors',true) Mdl = fitcecoc(X,Y,'Learners',t);
サポート ベクターおよび関連する値は、生成された ClassificationECOC
モデルを discardSupportVectors
に渡すことにより削除できます。
参照
[1] Christianini, N., and J. C. Shawe-Taylor. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge, UK: Cambridge University Press, 2000.
[2] Fan, R.-E., P.-H. Chen, and C.-J. Lin. “Working set selection using second order information for training support vector machines.” Journal of Machine Learning Research, Vol 6, 2005, pp. 1889–1918.
[3] Hastie, T., R. Tibshirani, and J. Friedman. The Elements of Statistical Learning, Second Edition. NY: Springer, 2008.
[4] Kecman V., T. -M. Huang, and M. Vogt. “Iterative Single Data Algorithm for Training Kernel Machines from Huge Data Sets: Theory and Performance.” In Support Vector Machines: Theory and Applications. Edited by Lipo Wang, 255–274. Berlin: Springer-Verlag, 2005.
[5] Scholkopf, B., J. C. Platt, J. C. Shawe-Taylor, A. J. Smola, and R. C. Williamson. “Estimating the Support of a High-Dimensional Distribution.” Neural Comput., Vol. 13, Number 7, 2001, pp. 1443–1471.
[6] Scholkopf, B., and A. Smola. Learning with Kernels: Support Vector Machines, Regularization, Optimization and Beyond, Adaptive Computation and Machine Learning. Cambridge, MA: The MIT Press, 2002.
バージョン履歴
R2014b で導入