Main Content

oobMargin

Out-of-bag classification margins for bagged classification ensemble

Description

m = oobMargin(ens) returns the classification margins for the out-of-bag data in the bagged classification ensemble model ens.

example

m = oobMargin(ens,Name=Value) specifies additional options using one or more name-value arguments. For example, you can specify the indices of the weak learners to use for calculating the margins.

Examples

collapse all

Find the out-of-bag margins for a bagged ensemble from the Fisher iris data.

Load the sample data set.

load fisheriris

Train an ensemble of bagged classification trees.

ens = fitcensemble(meas,species,'Method','Bag');

Find the number of out-of-bag margins that are equal to 1.

margin = oobMargin(ens);
sum(margin == 1)
ans = 
109

Input Arguments

collapse all

Bagged classification ensemble model, specified as a ClassificationBaggedEnsemble model object trained with fitcensemble.

Name-Value Arguments

collapse all

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Example: oobMargin(ens,Learners=[1 2 3 5]) specifies to use the first, second, third, and fifth learners in the ensemble ens.

Indices of the weak learners in the ensemble to use with oobMargin, specified as a vector of positive integers in the range [1:ens.NumTrained]. By default, the function uses all learners.

Example: Learners=[1 2 4]

Data Types: single | double

Flag to run in parallel, specified as a numeric or logical 1 (true) or 0 (false). If you specify UseParallel=true, the oobMargin function executes for-loop iterations by using parfor. The loop runs in parallel when you have Parallel Computing Toolbox™.

Example: UseParallel=true

Data Types: logical

More About

collapse all

Extended Capabilities

expand all

Version History

Introduced in R2012b