predictOptions
Option set for predict
Description
opt = predictOptions(Name,Value)Name,Value pair
arguments.
Examples
Create a default option set for model prediction.
opt = predictOptions;
Specify the output offsets for a two-output model as 2 and 5, respectively.
opt.OutputOffset = [2;5];
The software subtracts the offset value OutputOffset(i) from the i th output signal before using the output to predict the model response. The software then adds back these offsets to the predicted response to give the final response.
Create an option set for predict using zero initial conditions. 
opt = predictOptions('InitialCondition','z');
Load a two-input, one-output dataset.
load iddata7 z7
Identify a fifth-order state-space model using the data.
sys = n4sid(z7,5);
Split the dataset into two parts.
zA = z7(1:15); zB = z7(16:end);
Suppose that you want to compute the 10-step-ahead prediction of the response of the identified system for data zB. For initial conditions, use the signal values in zA as the historical record. That is, the input and output values for the time immediately preceding data in zB.
IO = struct('Input',zA.InputData,'Output',zA.OutputData); opt = predictOptions('InitialCondition',IO);
Generate the 10-step-ahead prediction for data zB using the specified initial conditions.
[yp,x0,Predictor] = predict(sys,zB,10,opt);
yp is the predicted model response, x0 are the initial states corresponding to the predictor model Predictor. You can simulate  Predictor using x0 as initial conditions to reproduce yp.OutputData.
To understand how the past data is mapped to the initial states of the model, see Understand Use of Historical Data for Model Prediction.
Name-Value Arguments
Specify optional pairs of arguments as
      Name1=Value1,...,NameN=ValueN, where Name is
      the argument name and Value is the corresponding value.
      Name-value arguments must appear after other arguments, but the order of the
      pairs does not matter.
    
      Before R2021a, use commas to separate each name and value, and enclose 
      Name in quotes.
    
Example: predictOptions('InitialCondition','z') specifies
zero initial conditions for the measured input-output data.
Handling of initial conditions, specified as the comma-separated
pair consisting of 'InitialCondition' and one of
the following values:
- 'z'— Zero initial conditions.
- 'e'— Estimate initial conditions such that the prediction error for observed output is minimized.- For nonlinear grey-box models, only those initial states - ithat are designated as free in the model (- sys.InitialStates(i).Fixed = false) are estimated. To estimate all the states of the model, first specify all the- Nxstates of the- idnlgreymodel- sysas free.- for i = 1:Nx sys.InitialStates(i).Fixed = false; end - Similarly, to fix all the initial states to values specified in - sys.InitialStates, first specify all the states as fixed in the- sys.InitialStatesproperty of the nonlinear grey-box model.
- 'd'— Similar to- 'e', but absorbs nonzero delays into the model coefficients. The delays are first converted to explicit model states, and the initial values of those states are also estimated and returned.- Use this option for linear models only. 
- Vector or Matrix — Initial guess for state values, specified as a numerical column vector of length equal to the number of states. For multi-experiment data, specify a matrix with Ne columns, where Ne is the number of experiments. Otherwise, use a column vector to specify the same initial conditions for all experiments. Use this option for state-space ( - idssand- idgrey) and nonlinear models (- idnlarx,- idnlhw, and- idnlgrey) only.
- initialConditionobject —- initialConditionobject that represents a model of the free response of the system to initial conditions. For multiexperiment data, specify a 1-by-Ne array of objects, where Ne is the number of experiments.- Use this option for linear models only. 
- Structure with the following fields, which contain the historical input and output values for a time interval immediately before the start time of the data used in the prediction: - Field - Description - Input- Input history, specified as a matrix with Nu columns, where Nu is the number of input channels. For time series models, use - []. The number of rows must be greater than or equal to the model order.- Output- Output history, specified as a matrix with Ny columns, where Ny is the number of output channels. The number of rows must be greater than or equal to the model order. - For an example, see Use Historical Data to Specify Initial Conditions for Model Prediction. - For multi-experiment data, configure the initial conditions separately for each experiment by specifying - InitialConditionas a structure array with Ne elements. To specify the same initial conditions for all experiments, use a single structure.- The software uses - data2stateto map the historical data to states. If your model is not- idss,- idgrey,- idnlgrey, or- idnlarx, the software first converts the model to its state-space representation and then maps the data to states. If conversion of your model to- idssis not possible, the estimated states are returned empty.
- x0obj— Specification object created using- idpar. Use this object for discrete-time state-space (- idssand- idgrey) and nonlinear grey-box (- idnlgrey) models only. Use- x0objto impose constraints on the initial states by fixing their value or specifying minimum or maximum bounds.
Input signal offset for time-domain data, specified as the comma-separated
pair consisting of 'InputOffset' and one of the
following values:
- []— No input offsets.
- A column vector of length Nu, where Nu is the number of inputs. The software subtracts the offset value - InputOffset(i)from the ith input signal before using the input to predict the model response.
- Nu-by-Ne matrix — For multi-experiment data, specify - InputOffsetas an Nu-by-Ne matrix, where Ne is the number of experiments. The software subtracts the offset value- InputOffset(i,j)from the ith input signal of the jth experiment before prediction.- If you specify a column vector of length Nu, then the offset value - InputOffset(i)is subtracted from the ith input signal of all the experiments.
Output signal offset for time-domain data, specified as the
comma-separated pair consisting of 'OutputOffset' and
one of the following values:
- []— No output offsets.
- A column vector of length Ny, where Ny is the number of outputs. The software subtracts the offset value - OutputOffset(i)from the ith output signal before using the output to predict the model response. After prediction, the software adds the offsets to the predicted response to give the final predicted response.
- Ny-by-Ne matrix — For multi-experiment data, specify - OutputOffsetas an Ny-by-Ne matrix, where Ne is the number of experiments. The software subtracts the offset value- OutputOffset(i,j)from the ith output signal of the jth experiment before prediction.- If you specify a column vector of length Ny, then the offset value - OutputOffset(i)is subtracted from the ith output signal of all the experiments.- After prediction, the software adds the removed offsets to the predicted response to give the final predicted response. 
Weight of output for initial condition estimation, specified
as the comma-separated pair consisting of 'OutputWeight' and
one of the following values:
- []— No weighting is used by the software for initial condition estimation. This option is the same as using- eye(Ny)for the output weight, where Ny is the number of outputs.
- 'noise'— The software uses the inverse of the- NoiseVarianceproperty of the model as the weight.
- A positive, semidefinite matrix of dimension Ny-by-Ny, where Ny is the number of outputs. 
OutputWeight is relevant only for multi-output
models.
Input interpolation method, specified as:
- 'auto',- 'foh',- 'zoh', or- 'bl'for continuous-time linear models
- 'auto',- 'foh', or- 'zoh'for continuous-time nonlinear grey-box models
- 'auto',- 'foh',- 'zoh',- 'cubic',- 'makima',- 'pchip', or- 'spline'for continuous-time neural state-space models
InputInterSample applies only to continuous-time models. If
                InputInterSample is 'auto', the software
              automatically picks the same input interpolation method as that used for model
              estimation.
For information on the interpolation methods, see nssTrainingADAM and compareOptions.
Output Arguments
Option set for predict, returned as a predictOptions
            option set.
Version History
Introduced in R2012a
See Also
predict | absorbDelay | idpar
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Web サイトの選択
Web サイトを選択すると、翻訳されたコンテンツにアクセスし、地域のイベントやサービスを確認できます。現在の位置情報に基づき、次のサイトの選択を推奨します:
また、以下のリストから Web サイトを選択することもできます。
最適なサイトパフォーマンスの取得方法
中国のサイト (中国語または英語) を選択することで、最適なサイトパフォーマンスが得られます。その他の国の MathWorks のサイトは、お客様の地域からのアクセスが最適化されていません。
南北アメリカ
- América Latina (Español)
- Canada (English)
- United States (English)
ヨーロッパ
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)