Main Content

driving.scenario.targetsToScenario

Convert target poses from ego to scenario coordinates

Description

targetPosesScenarioCoords = driving.scenario.targetsToScenario(targetPosesEgoCoords,egoPose) converts the poses of target actors from coordinates relative to the pose of an ego actor to the world coordinates of a driving scenario. A pose is the position, velocity, and orientation of an actor. For more details on the coordinate systems of actors, see Ego Vehicle and Targets.

example

targetPosesScenarioCoords = driving.scenario.targetsToScenario(targetPosesEgoCoords,egoActor) converts target poses by using the pose of the specified ego actor.

Examples

collapse all

In a simple driving scenario, obtain the poses of target vehicles in the coordinate system of the ego vehicle. Then convert these poses back to the world coordinates of the driving scenario.

Create a driving scenario.

scenario = drivingScenario;

Create target actors.

actor(scenario,'ClassID',1, ...
    'Position',[10 20 30], ...
    'Velocity',[12 113 14], ...
    'Yaw',54, ...
    'Pitch',25, ...
    'Roll',22, ...
    'AngularVelocity',[24 42 27]);

actor(scenario,'ClassID',1, ...
    'Position',[17 22 12], ...
    'Velocity',[19 13 15], ...
    'Yaw',45, ...
    'Pitch',52, ...
    'Roll',2, ...
    'AngularVelocity',[42 24 29]);

Add an ego vehicle actor.

egoActor = actor(scenario,'ClassID',1, ...
    'Position',[1 2 3], ...
    'Velocity',[1.2 1.3 1.4], ...
    'Yaw',4, ...
    'Pitch',5, ...
    'Roll',2, ...
    'AngularVelocity',[4 2 7]);

Use the actorPoses function to return the poses of all actors in the scenario. Pose properties (position, velocity, and orientation) are in the world coordinates of the driving scenario. Save the target actors to a separate variable and inspect the pose of the first target actor.

allPoses = actorPoses(scenario);
targetPosesScenarioCoords = allPoses(1:2);
targetPosesScenarioCoords(1)
ans = struct with fields:
            ActorID: 1
           Position: [10 20 30]
           Velocity: [12 113 14]
               Roll: 22
              Pitch: 25
                Yaw: 54
    AngularVelocity: [24 42 27]

Use the driving.scenario.targetsToEgo function to convert the target poses to the ego-centric coordinates of the ego actor. Inspect the pose of the first actor.

targetPosesEgoCoords = driving.scenario.targetsToEgo(targetPosesScenarioCoords,egoActor);
targetPosesEgoCoords(1)
ans = struct with fields:
            ActorID: 1
           Position: [7.8415 18.2876 27.1675]
           Velocity: [18.6826 112.0403 9.2960]
               Roll: 16.4327
              Pitch: 23.2186
                Yaw: 47.8114
    AngularVelocity: [-3.3744 47.3021 18.2569]

Alternatively, use the targetPoses function to obtain all target actor poses in ego vehicle coordinates. Display the first target pose, which matches the previously calculated pose.

targetPosesEgoCoords = targetPoses(egoActor);
targetPosesEgoCoords(1)
ans = struct with fields:
            ActorID: 1
            ClassID: 1
           Position: [7.8415 18.2876 27.1675]
           Velocity: [18.6826 112.0403 9.2960]
               Roll: 16.4327
              Pitch: 23.2186
                Yaw: 47.8114
    AngularVelocity: [-3.3744 47.3021 18.2569]

Use the driving.scenario.targetsToScenario to convert the target poses back to the world coordinates of the scenario. Display the first target pose, which matches the original target pose.

targetPosesScenarioCoords = driving.scenario.targetsToScenario(targetPosesEgoCoords,egoActor);
targetPosesScenarioCoords(1)
ans = struct with fields:
            ActorID: 1
            ClassID: 1
           Position: [10.0000 20.0000 30.0000]
           Velocity: [12.0000 113.0000 14.0000]
               Roll: 22
              Pitch: 25.0000
                Yaw: 54
    AngularVelocity: [24.0000 42.0000 27.0000]

Input Arguments

collapse all

Target poses in ego actor coordinates, specified as a structure or an array of structures.

Each target pose structure must contain at least these fields.

FieldDescription
ActorID

Scenario-defined actor identifier, specified as a positive integer.

Position

Position of actor, specified as a real-valued vector of the form [x, y, z]. Units are in meters.

Velocity

Velocity (v) of actor in the x-, y-, and z-direction, specified as a real-valued vector of the form [vx, vy, vz]. Units are in meters per second.

Roll

Roll angle of actor, specified as a real-valued scalar. Units are in degrees.

Pitch

Pitch angle of actor, specified as a real-valued scalar. Units are in degrees.

Yaw

Yaw angle of actor, specified as a real-valued scalar. Units are in degrees.

AngularVelocity

Angular velocity (ω) of actor in the x-, y-, and z-direction, specified as a real-valued vector of the form [ωx, ωy, ωz]. Units are in degrees per second.

For full definitions of these structure fields, see the actor and vehicle functions.

Ego actor pose in the world coordinates of a driving scenario, specified as a structure.

The ego actor pose structure must contain at least these fields.

FieldDescription
ActorID

Scenario-defined actor identifier, specified as a positive integer.

Position

Position of actor, specified as a real-valued vector of the form [x, y, z]. Units are in meters.

Velocity

Velocity (v) of actor in the x-, y-, and z-direction, specified as a real-valued vector of the form [vx, vy, vz]. Units are in meters per second.

Roll

Roll angle of actor, specified as a real-valued scalar. Units are in degrees.

Pitch

Pitch angle of actor, specified as a real-valued scalar. Units are in degrees.

Yaw

Yaw angle of actor, specified as a real-valued scalar. Units are in degrees.

AngularVelocity

Angular velocity (ω) of actor in the x-, y-, and z-direction, specified as a real-valued vector of the form [ωx, ωy, ωz]. Units are in degrees per second.

For full definitions of these structure fields, see the actor and vehicle functions.

Ego actor in the world coordinates of a driving scenario, specified as an Actor or Vehicle object. The function converts the coordinates of target actors relative to the pose of egoActor. The pose information is stored in the Position, Velocity, Roll, Pitch, Yaw, and AngularVelocity properties of the ego actor.

For the full definitions of pose properties, see the actor and vehicle functions.

Output Arguments

collapse all

Target actor poses in the world coordinates of a driving scenario, returned as a structure or an array of structures.

At a minimum, each returned target pose structure has these fields.

FieldDescription
ActorID

Scenario-defined actor identifier, specified as a positive integer.

Position

Position of actor, specified as a real-valued vector of the form [x, y, z]. Units are in meters.

Velocity

Velocity (v) of actor in the x-, y-, and z-direction, specified as a real-valued vector of the form [vx, vy, vz]. Units are in meters per second.

Roll

Roll angle of actor, specified as a real-valued scalar. Units are in degrees.

Pitch

Pitch angle of actor, specified as a real-valued scalar. Units are in degrees.

Yaw

Yaw angle of actor, specified as a real-valued scalar. Units are in degrees.

AngularVelocity

Angular velocity (ω) of actor in the x-, y-, and z-direction, specified as a real-valued vector of the form [ωx, ωy, ωz]. Units are in degrees per second.

The returned targetPosesScenarioCoords structures include the same fields as those in the input targetPosesEgoCoords structures. For example, if the input structures include a ClassID field, then the returned structures also include ClassID.

For full definitions of these structure fields, see the actor and vehicle functions.

More About

collapse all

Ego Vehicle and Targets

In a driving scenario, you can specify one actor as the observer of all other actors, similar to how the driver of a car observes all other cars. The observer actor is called the ego actor or, more specifically, the ego vehicle. From the perspective of the ego vehicle, all other actors (such as vehicles and pedestrians) are the observed actors, called targets. Ego vehicle coordinates are centered and oriented with reference to the ego vehicle. The coordinates of the driving scenario are world coordinates.

Introduced in R2020a