Main Content

このページの翻訳は最新ではありません。ここをクリックして、英語の最新版を参照してください。

入れ子になった深層学習層の定義

目的の分類または回帰問題に必要な層が Deep Learning Toolbox™ に用意されていない場合、この例を指針として使用して独自のカスタム層を定義できます。組み込まれている層の一覧については、深層学習層の一覧を参照してください。

それ自体が層グラフを定義するカスタム層を作成するには、学習可能なパラメーターとして dlnetwork オブジェクトを指定できます。これは "ネットワーク構成" と呼ばれます。以下の場合にネットワーク構成を使用できます。

  • 学習可能な層のブロックを表す単一のカスタム層の作成。残差ブロックなど。

  • コントロール フローをもつネットワークの作成。入力データに応じてネットワークの一部を動的に変更できるようにする場合など。

  • ループをもつネットワークの作成。ネットワークの一部がその出力を自分自身にフィード バックする場合など。

詳細については、深層学習のネットワーク構成を参照してください。

この例では、残差ブロックを表すカスタム層を作成する方法を説明します。カスタム層 residualBlockLayer は、畳み込み層、グループ正規化層、ReLU 層、加算層から成る学習可能な層ブロックで構成され、スキップ接続も含んでいます。スキップ接続には、オプションとして畳み込み層とグループ正規化層が含まれることがあります。次の図に、残差ブロックの構造を示します。

Structure of residual block. It contains a convolution, a group normalization, a ReLU, a second convolution, a second group normalization, an addition, and a ReLU layer connected in series. There is a skip connection from the block input to the addition layer. There is also another convolution and group normalization layer connected in series that appears on the skip connection. The layers appearing on the skip connection are highlighted as optional.

カスタム深層学習層を定義するために、この例で提供するテンプレートを使用できます。この例では、次のステップで説明を進めます。

  1. 層の命名 – MATLAB® で使用できるように層に名前を付けます。

  2. 層のプロパティの宣言 – 層のプロパティと、学習中にどのパラメーターが学習されるかを指定します。

  3. コンストラクター関数の作成 (オプション) – 層の構築とそのプロパティ初期化の方法を指定します。コンストラクター関数を指定しない場合、作成時に NameDescription、および Type の各プロパティは [] で初期化され、層の入力および出力の数は 1 に設定されます。

  4. 順方向関数の作成 – 予測時および学習時に層経由でデータを順方向にパス (順伝播) する方法を指定します。

  5. 逆方向関数の作成 (オプション) – 入力データおよび学習可能なパラメーターにおける損失の微分を指定します (逆伝播)。逆方向関数を指定しない場合、順方向関数は dlarray オブジェクトをサポートしなければなりません。

学習可能なパラメーターを含む層のテンプレート

学習可能なパラメーターを含む層のテンプレートを MATLAB の新しいファイルにコピーします。このテンプレートは、学習可能なパラメーターを含む層の構造の概要を示しており、層の動作を定義する関数を含んでいます。

classdef myLayer < nnet.layer.Layer

    properties
        % (Optional) Layer properties.

        % Layer properties go here.
    end

    properties (Learnable)
        % (Optional) Layer learnable parameters.

        % Layer learnable parameters go here.
    end
    
    methods
        function layer = myLayer()
            % (Optional) Create a myLayer.
            % This function must have the same name as the class.

            % Layer constructor function goes here.
        end
        
        function [Z1, …, Zm] = predict(layer, X1, …, Xn)
            % Forward input data through the layer at prediction time and
            % output the result.
            %
            % Inputs:
            %         layer       - Layer to forward propagate through
            %         X1, ..., Xn - Input data
            % Outputs:
            %         Z1, ..., Zm - Outputs of layer forward function
            
            % Layer forward function for prediction goes here.
        end

        function [Z1, …, Zm, memory] = forward(layer, X1, …, Xn)
            % (Optional) Forward input data through the layer at training
            % time and output the result and a memory value.
            %
            % Inputs:
            %         layer       - Layer to forward propagate through
            %         X1, ..., Xn - Input data
            % Outputs:
            %         Z1, ..., Zm - Outputs of layer forward function
            %         memory      - Memory value for custom backward propagation

            % Layer forward function for training goes here.
        end

        function [dLdX1, …, dLdXn, dLdW1, …, dLdWk] = ...
                backward(layer, X1, …, Xn, Z1, …, Zm, dLdZ1, …, dLdZm, memory)
            % (Optional) Backward propagate the derivative of the loss  
            % function through the layer.
            %
            % Inputs:
            %         layer             - Layer to backward propagate through
            %         X1, ..., Xn       - Input data
            %         Z1, ..., Zm       - Outputs of layer forward function            
            %         dLdZ1, ..., dLdZm - Gradients propagated from the next layers
            %         memory            - Memory value from forward function
            % Outputs:
            %         dLdX1, ..., dLdXn - Derivatives of the loss with respect to the
            %                             inputs
            %         dLdW1, ..., dLdWk - Derivatives of the loss with respect to each
            %                             learnable parameter
            
            % Layer backward function goes here.
        end
    end
end

層の命名

まず、層に名前を付けます。クラス ファイルの最初の行で、既存の名前 myLayerresidualBlockLayer に置き換えます。

classdef residualBlockLayer < nnet.layer.Layer
    ...
end

次に、コンストラクター関数 myLayer (methods セクションの最初の関数) の名前を層と同じ名前に変更します。

    methods
        function layer = residualBlockLayer()           
            ...
        end

        ...
     end

層の保存

層のクラス ファイルを residualBlockLayer.m という名前の新しいファイルに保存します。このファイル名は層の名前に一致しなければなりません。この層を使用するには、このファイルを現在のフォルダーまたは MATLAB パス上のフォルダーに保存しなければなりません。

プロパティおよび学習可能なパラメーターの宣言

層のプロパティを properties セクションで宣言し、学習可能なパラメーターを properties (Learnable) セクションにリストすることによって宣言します。

既定では、カスタム中間層には次のプロパティがあります。

Property説明
Name 層の名前。文字ベクトルまたは string スカラーとして指定します。層グラフに層を含めるには、空ではない一意の層の名前を指定しなければなりません。この層が含まれる系列ネットワークに学習させて Name'' に設定すると、学習時に層に名前が自動的に割り当てられます。
Description

層についての 1 行の説明。文字ベクトルまたは string スカラーとして指定します。この説明は、層が Layer 配列に表示されるときに表示されます。層の説明を指定しない場合、層のクラス名が表示されます。

Type層のタイプ。文字ベクトルまたは string スカラーとして指定します。Type の値は、層が Layer 配列に表示されるときに表示されます。層のタイプを指定しない場合、層のクラス名が表示されます。
NumInputs層の入力の数。正の整数として指定します。この値を指定しない場合、NumInputsInputNames の名前の数に自動的に設定されます。既定値は 1 です。
InputNames層の入力の名前。文字ベクトルの cell 配列として指定します。この値を指定せず、NumInputs が 1 より大きい場合、InputNames{'in1',...,'inN'} に自動的に設定されます。ここで、N = NumInputs です。既定値は {'in'} です。
NumOutputs層の出力の数。正の整数として指定します。この値を指定しない場合、NumOutputsOutputNames の名前の数に自動的に設定されます。既定値は 1 です。
OutputNames層の出力の名前。文字ベクトルの cell 配列として指定します。この値を指定せず、NumOutputs が 1 より大きい場合、OutputNames{'out1',...,'outM'} に自動的に設定されます。ここで、M = NumOutputs です。既定値は {'out'} です。

層にその他のプロパティがない場合は、properties セクションを省略できます。

ヒント

複数の入力がある層を作成する場合、層のコンストラクターで NumInputsInputNames のいずれかのプロパティを設定しなければなりません。複数の出力がある層を作成している場合、層のコンストラクターで NumOutputsOutputNames のいずれかのプロパティを設定しなければなりません。例については、複数の入力があるカスタム深層学習層の定義を参照してください。

この残差ブロック層には追加のプロパティが必要ないため、properties セクションは削除できます。

このカスタム層で唯一の学習可能なパラメーターは、dlnetwork オブジェクトとして指定された残差ブロック自体です。この学習可能なパラメーターを properties (Learnable) セクションで宣言し、パラメーター Network を呼び出します。

        properties (Learnable)
        % Layer learnable parameters
    
        % Residual block.
        Network
    end

コンストラクター関数の作成

層を構築する関数を作成し、層のプロパティを初期化します。層を作成するために必要な変数をコンストラクター関数への入力として指定します。

残差ブロック層のコンストラクター関数には、入力引数が 5 つ必要です。

  • 層の入力サイズ

  • 畳み込みフィルターの数

  • ストライド (オプション。ストライドの既定値は 1)

  • スキップ接続に畳み込み層を含めるためのフラグ (オプション。フラグの既定値は false)

  • 層の名前 (オプション。既定の名前は '')

コンストラクター関数 residualBlockLayer で、inputSizenumFilters という名前をもつ 2 つの必須入力引数を指定し、オプションの引数を NameValueArgs という名前をもつ名前と値のペアとして指定します。関数の構文を説明するコメントを関数の上部に追加します。

        function layer = residualBlockLayer(inputSize,numFilters,NameValueArgs)
            % layer = residualBlockLayer(inputSize,numFilters) creates a
            % residual block layer with the specified input size and number
            % of filters.
            %
            % layer = residualBlockLayer(inputSize,numFilters,Name,Value)
            % specifies additional options using one or more name-value
            % pairs:
            % 
            %     'Stride'                 - Stride of convolution operation 
            %                                (default 1)
            %
            %     'IncludeSkipConvolution' - Flag to include convolution in
            %                                skip connection
            %                                (default false)
            %
            %     'Name'                   - Layer name
            %                                (default '')

            ...
        end

入力引数の解析

arguments ブロックを使用して入力引数を解析します。関数構文と同じ順序で引数をリストし、既定値を指定します。その後、入力 NameValueArgs から値を抽出します。

            % Parse input arguments.
            arguments
                inputSize
                numFilters                
                NameValueArgs.Stride = 1
                NameValueArgs.IncludeSkipConvolution = false
                NameValueArgs.Name = ''
            end
            
            stride = NameValueArgs.Stride;
            includeSkipConvolution = NameValueArgs.IncludeSkipConvolution;
            name = NameValueArgs.Name;

層のプロパティの初期化

コンストラクター関数で、層のプロパティ (dlnetwork オブジェクトなど) を初期化します。コメント % Layer constructor function goes here を、層のプロパティを初期化するコードに置き換えます。

Name プロパティを入力引数 name に設定します。

            % Set layer name.
            layer.Name = name;

層の Description プロパティを設定して、層に 1 行の説明を指定します。層とプロパティ (オプション) の説明を設定します。

            % Set layer description.
            description = "Residual block with " + numFilters + " filters, stride " + stride;
            if includeSkipConvolution
                description = description + ", and skip convolution";
            end
            layer.Description = description;

Type プロパティを設定して層のタイプを指定します。Type の値は、層が Layer 配列に表示されるときに表示されます。

            % Set layer type.
            layer.Type = "Residual Block";

残差ブロックを定義します。まず、ブロックの主要層を含む層配列を作成し、その配列を層グラフに変換します。この層グラフには入力層がなければなりません。

            % Define nested layer graph.
            layers = [
                imageInputLayer(inputSize,'Normalization','None','Name','in')
                
                convolution2dLayer(3,numFilters,'Padding','same','Stride',stride,'Name','conv1')
                groupNormalizationLayer('all-channels','Name','gn1')
                reluLayer('Name','relu1')
                convolution2dLayer(3,numFilters,'Padding','same','Name','conv2')
                groupNormalizationLayer('channel-wise','Name','gn2')
                
                additionLayer(2,'Name','add')
                reluLayer('Name','relu2')];
            
            lgraph = layerGraph(layers);

次に、スキップ接続を追加します。includeSkipConvolution フラグが true の場合は、畳み込み層とグループ正規化層をスキップ接続に含めます。

            % Add skip connection.
            if includeSkipConvolution
                layers = [
                    convolution2dLayer(1,numFilters,'Stride',stride,'Name','convSkip')
                    groupNormalizationLayer('all-channels','Name','gnSkip')];
                
                lgraph = addLayers(lgraph,layers);
                lgraph = connectLayers(lgraph,'in','convSkip');
                lgraph = connectLayers(lgraph,'gnSkip','add/in2');
            else
                lgraph = connectLayers(lgraph,'in','add/in2');    
            end

最後に、層グラフを dlnetwork オブジェクトに変換し、層の Network プロパティを設定します。

            % Convert to dlnetwork.
            dlnet = dlnetwork(lgraph);
            
            % Set Network property.
            layer.Network = dlnet;

完成したコンストラクター関数を表示します。

        function layer = residualBlockLayer(inputSize,numFilters,NameValueArgs)
            % layer = residualBlockLayer(inputSize,numFilters) creates a
            % residual block layer with the specified input size and number
            % of filters.
            %
            % layer = residualBlockLayer(inputSize,numFilters,Name,Value)
            % specifies additional options using one or more name-value
            % pairs:
            % 
            %     'Stride'                 - Stride of convolution operation 
            %                                (default 1)
            %
            %     'IncludeSkipConvolution' - Flag to include convolution in
            %                                skip connection
            %                                (default false)
            %
            %     'Name'                   - Layer name
            %                                (default '')
    
            % Parse input arguments.
            arguments
                inputSize
                numFilters
                NameValueArgs.Stride = 1
                NameValueArgs.IncludeSkipConvolution = false
                NameValueArgs.Name = ''
            end
    
            stride = NameValueArgs.Stride;
            includeSkipConvolution = NameValueArgs.IncludeSkipConvolution;
            name = NameValueArgs.Name;
    
            % Set layer name.
            layer.Name = name;
    
            % Set layer description.
            description = "Residual block with " + numFilters + " filters, stride " + stride;
            if includeSkipConvolution
                description = description + ", and skip convolution";
            end
            layer.Description = description;
            
            % Set layer type.
            layer.Type = "Residual Block";
    
            % Define nested layer graph.
            layers = [
                imageInputLayer(inputSize,'Normalization','None','Name','in')
    
                convolution2dLayer(3,numFilters,'Padding','same','Stride',stride,'Name','conv1')
                groupNormalizationLayer('all-channels','Name','gn1')
                reluLayer('Name','relu1')
                convolution2dLayer(3,numFilters,'Padding','same','Name','conv2')
                groupNormalizationLayer('channel-wise','Name','gn2')
    
                additionLayer(2,'Name','add')
                reluLayer('Name','relu2')];
    
            lgraph = layerGraph(layers);
    
            % Add skip connection.
            if includeSkipConvolution
                layers = [
                    convolution2dLayer(1,numFilters,'Stride',stride,'Name','convSkip')
                    groupNormalizationLayer('all-channels','Name','gnSkip')];
     
                lgraph = addLayers(lgraph,layers);
                lgraph = connectLayers(lgraph,'in','convSkip');
                lgraph = connectLayers(lgraph,'gnSkip','add/in2');
            else
                lgraph = connectLayers(lgraph,'in','add/in2');    
            end 
    
            % Convert to dlnetwork.
            dlnet = dlnetwork(lgraph);
    
            % Set Network property.
            layer.Network = dlnet;
        end

このコンストラクター関数を使用すると、入力サイズが [32 32 64] で、64 個のフィルターとストライド 2 をもち、スキップ接続内に畳み込み層をもつ 'res5' という名前の残差ブロック層が、コマンド residualBlockLayer([32 32 64],64,'Stride',2,'IncludeSkipConvolution',true,'Name','res5') によって作成されます。

順方向関数の作成

予測時と学習時に使用する層の順方向関数を作成します。

"予測時" に層経由でデータを順伝播させて結果を出力する、predict という名前の関数を作成します。

predict の構文は、以下のとおりです。

[Z1,…,Zm] = predict(layer,X1,…,Xn)
ここで、X1,…,Xnn 個の層入力、Z1,…,Zmm 個の層出力です。値 n および m は、層の NumInputs プロパティおよび NumOutputs プロパティに対応しなければなりません。

ヒント

predict への入力の数が変化する可能性がある場合、X1,…,Xn ではなく varargin を使用します。この場合、varargin は入力の cell 配列です。ここで、varargin{i}Xi に対応します。出力の数が変化する可能性がある場合、Z1,…,Zm ではなく varargout を使用します。この場合、varargout は出力の cell 配列です。ここで、varargout{j}Zj に対応します。

ヒント

学習可能なパラメーターの dlnetwork オブジェクトがカスタム層にある場合、カスタム層の関数 predict 内で、dlnetwork の関数 predict を使用します。dlnetwork オブジェクトの関数 predict を使用すると、ソフトウェアは必ず適切な層処理を選択して予測を行います。

残差ブロックの入力および出力はそれぞれ 1 つのみであるため、カスタム層の predict の構文は Z = predict(layer,X) になります。

既定では、層は学習時に predict を順方向関数として使用します。学習時に別の順方向関数を使用する、またはカスタム逆方向関数に必要な値を保持するには、forward という名前の関数も作成しなければなりません。

入力の次元は、データのタイプと結合層の出力によって異なります。

層入力入力サイズ観察値の次元
2 次元イメージh x w x c x N。ここで、h、w、および c は、それぞれイメージの高さ、幅、およびチャネル数に対応します。N は観測値の数です。4
3 次元イメージh x w x d x c x N。ここで、h、w、d、および c は、それぞれ 3 次元イメージの高さ、幅、深さ、およびチャネル数に対応します。N は観測値の数です。5
ベクトル シーケンスc x N x S。ここで、c はシーケンスの特徴の数、N は観測値の数、S はシーケンス長です。2
2 次元イメージ シーケンスh x w x c x N x S。ここで、h、w、および c は、それぞれイメージの高さ、幅、およびチャネル数に対応します。N は観測値の数、S はシーケンス長です。4
3 次元イメージ シーケンスh x w x d x c x N x S。ここで、h、w、d、および c は、それぞれ 3 次元イメージの高さ、幅、深さ、およびチャネル数に対応します。N は観測値の数、S はシーケンス長です。5

残差ブロック層の場合、層のフォワード パスは単純に dlnetwork オブジェクトのフォワード パスになります。dlnetwork オブジェクトに入力データを渡すには、まず、そのデータを書式付き dlarray オブジェクトに変換しなければなりません。

この演算をカスタム層の関数 predict に実装します。予測用に dlnetwork のフォワード パスを実行するには、dlnetwork オブジェクトの関数 predict を使用します。

学習時の dlnetwork オブジェクトの動作は同じであり、残差ブロック層では学習にメモリまたは別の順方向関数が必要ないため、クラス ファイルから関数 forward を削除できます。

関数 predict を作成し、関数の構文を説明するコメントを関数の上部に追加します。

        function Z = predict(layer, X)
            % Forward input data through the layer at prediction time and
            % output the result.
            %
            % Inputs:
            %         layer - Layer to forward propagate through
            %         X     - Input data
            % Outputs:
            %         Z - Output of layer forward function
                       
            % Convert input data to formatted dlarray.
            X = dlarray(X,'SSCB');
            
            % Predict using network.
            dlnet = layer.Network;
            Z = predict(dlnet,X);
            
            % Strip dimension labels.
            Z = stripdims(Z);
        end

関数 predictdlarray オブジェクトをサポートする関数のみを使用するため、関数 backward の定義はオプションです。dlarray オブジェクトをサポートしている関数の一覧については、dlarray をサポートする関数の一覧を参照してください。

完成した層

完成した層のクラス ファイルを表示します。

classdef residualBlockLayer < nnet.layer.Layer
    % Example custom residual block layer.


    properties (Learnable)
        % Layer learnable parameters
    
        % Residual block.
        Network
    end
    
    methods
        function layer = residualBlockLayer(inputSize,numFilters,NameValueArgs)
            % layer = residualBlockLayer(inputSize,numFilters) creates a
            % residual block layer with the specified input size and number
            % of filters.
            %
            % layer = residualBlockLayer(inputSize,numFilters,Name,Value)
            % specifies additional options using one or more name-value
            % pairs:
            % 
            %     'Stride'                 - Stride of convolution operation 
            %                                (default 1)
            %
            %     'IncludeSkipConvolution' - Flag to include convolution in
            %                                skip connection
            %                                (default false)
            %
            %     'Name'                   - Layer name
            %                                (default '')
    
            % Parse input arguments.
            arguments
                inputSize
                numFilters
                NameValueArgs.Stride = 1
                NameValueArgs.IncludeSkipConvolution = false
                NameValueArgs.Name = ''
            end
    
            stride = NameValueArgs.Stride;
            includeSkipConvolution = NameValueArgs.IncludeSkipConvolution;
            name = NameValueArgs.Name;
    
            % Set layer name.
            layer.Name = name;
    
            % Set layer description.
            description = "Residual block with " + numFilters + " filters, stride " + stride;
            if includeSkipConvolution
                description = description + ", and skip convolution";
            end
            layer.Description = description;
            
            % Set layer type.
            layer.Type = "Residual Block";
    
            % Define nested layer graph.
            layers = [
                imageInputLayer(inputSize,'Normalization','None','Name','in')
    
                convolution2dLayer(3,numFilters,'Padding','same','Stride',stride,'Name','conv1')
                groupNormalizationLayer('all-channels','Name','gn1')
                reluLayer('Name','relu1')
                convolution2dLayer(3,numFilters,'Padding','same','Name','conv2')
                groupNormalizationLayer('channel-wise','Name','gn2')
    
                additionLayer(2,'Name','add')
                reluLayer('Name','relu2')];
    
            lgraph = layerGraph(layers);
    
            % Add skip connection.
            if includeSkipConvolution
                layers = [
                    convolution2dLayer(1,numFilters,'Stride',stride,'Name','convSkip')
                    groupNormalizationLayer('all-channels','Name','gnSkip')];
     
                lgraph = addLayers(lgraph,layers);
                lgraph = connectLayers(lgraph,'in','convSkip');
                lgraph = connectLayers(lgraph,'gnSkip','add/in2');
            else
                lgraph = connectLayers(lgraph,'in','add/in2');    
            end 
    
            % Convert to dlnetwork.
            dlnet = dlnetwork(lgraph);
    
            % Set Network property.
            layer.Network = dlnet;
        end
        
        function Z = predict(layer, X)
            % Forward input data through the layer at prediction time and
            % output the result.
            %
            % Inputs:
            %         layer - Layer to forward propagate through
            %         X     - Input data
            % Outputs:
            %         Z - Output of layer forward function
                       
            % Convert input data to formatted dlarray.
            X = dlarray(X,'SSCB');
            
            % Predict using network.
            dlnet = layer.Network;
            Z = predict(dlnet,X);
            
            % Strip dimension labels.
            Z = stripdims(Z);
        end
    end
end

GPU 互換性

層の順方向関数が dlarray オブジェクトを完全にサポートしている場合、層は GPU 互換です。そうでない場合、GPU 互換にするには、層関数が入力をサポートし、gpuArray (Parallel Computing Toolbox) 型の出力を返さなければなりません。

多くの MATLAB 組み込み関数が入力引数 gpuArray (Parallel Computing Toolbox) および dlarray をサポートしています。dlarray オブジェクトをサポートしている関数の一覧については、dlarray をサポートする関数の一覧を参照してください。GPU で実行される関数の一覧については、GPU での MATLAB 関数の実行 (Parallel Computing Toolbox)を参照してください。深層学習に GPU を使用するには、Compute Capability 3.0 以上の CUDA® 対応 NVIDIA® GPU も必要です。MATLAB での GPU の使用の詳細は、MATLAB での GPU 計算 (Parallel Computing Toolbox)を参照してください。

この例では、predict で使用される MATLAB 関数はすべて、dlarray オブジェクトをサポートしているため、層は GPU 互換です。

checkLayer を使用した層の有効性のチェック

関数 checkLayer を使用して、カスタム層 residualBlockLayer について層の有効性をチェックします。

残差ブロック層のインスタンスを作成します。この層にアクセスするには、この例をライブ スクリプトとして開きます。

inputSize = [56 56 64];
numFilters = 64;

layer = residualBlockLayer(inputSize,numFilters)
layer = 
  residualBlockLayer with properties:

       Name: ''

   Learnable Parameters
    Network: [1x1 dlnetwork]

  Show all properties

関数 checkLayer を使用して、層の有効性をチェックします。層には 4 次元配列を入力する必要があり、最初の 3 つの次元は前の層の出力における高さ、幅、およびチャネル数に対応し、4 番目の次元は観測値に対応します。層の構築時に使用したサイズに等しい有効な入力サイズを指定し、'ObservationDimension' オプションを 4 に設定します。

validInputSize = inputSize;
checkLayer(layer,validInputSize,'ObservationDimension',4)
Skipping GPU tests. No compatible GPU device found.
 
Skipping code generation compatibility tests. To check validity of the layer for code generation, specify the 'CheckCodegenCompatibility' and 'ObservationDimension' options.
 
Running nnet.checklayer.TestLayerWithoutBackward
.......... ...
Done nnet.checklayer.TestLayerWithoutBackward
__________

Test Summary:
	 13 Passed, 0 Failed, 0 Incomplete, 8 Skipped.
	 Time elapsed: 3.434 seconds.

ここでは、関数で層に関する問題はまったく検出されていません。

参考

| | | | |

関連するトピック