ドキュメンテーション

最新のリリースでは、このページがまだ翻訳されていません。 このページの最新版は英語でご覧になれます。

setLearnRateFactor

層の学習可能なパラメーターの学習率係数を設定します。

説明

layer = setLearnRateFactor(layer,parameterName,factor) は、layerparameterName という名前のパラメーターの学習率係数を factor に設定します。

組み込みの層の場合、対応するプロパティを使用して学習率係数を直接設定できます。たとえば、convolution2dLayer 層の場合、構文 layer = setLearnRateFactor(layer,'Weights',factor)layer.WeightLearnRateFactor = factor と等価です。

すべて折りたたむ

カスタム PReLU 層の学習可能なパラメーターの学習率係数を設定および取得します。

カスタム PReLU 層を定義します。この層を作成するには、ファイル preluLayer.m を現在のフォルダーに保存します。

カスタム層 preluLayer を含む層配列を作成します。

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    batchNormalizationLayer
    preluLayer(20,'prelu')
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer];

preluLayer の学習可能なパラメーター 'Alpha' の学習率係数を 2 に設定します。

layers(4) = setLearnRateFactor(layers(4),'Alpha',2);

更新された学習率係数を表示します。

factor = getLearnRateFactor(layers(4),'Alpha')
factor = 2

入力引数

すべて折りたたむ

入力層。スカラー Layer オブジェクトとして指定します。

パラメーター名。文字ベクトルとして指定します。

例: 'Alpha'

データ型: char

パラメーターの学習率係数。非負のスカラーとして指定します。

この係数にグローバル学習率が乗算されて、指定されたパラメーターの学習率が決定されます。たとえば、factor が 2 の場合、指定されたパラメーターの学習率は現在のグローバル学習率の 2 倍になります。関数 trainingOptions で指定された設定に基づいて、グローバル学習率が決定されます。

例: 2

R2017b で導入