TrainingOptionsSGDM
モーメンタム項付き確率的勾配降下法の学習オプション
説明
学習率の情報、L2 正則化係数、ミニバッチのサイズなど、モーメンタム項付き確率的勾配降下法の学習オプション。
作成
trainingOptions
を使用し、最初の入力引数として "sgdm"
を指定し、TrainingOptionsSGDM
オブジェクトを作成します。
プロパティ
SGDM
MaxEpochs
— エポックの最大回数
30
(既定値) | 正の整数
学習に使用するエポックの最大数 (データを一巡する回数)。正の整数として指定します。
データ型: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
MiniBatchSize
— ミニバッチのサイズ
128
(既定値) | 正の整数
学習の各反復で使用するミニバッチのサイズ。正の整数として指定します。ミニバッチとは、損失関数の勾配を評価し、重みを更新するために使用される学習セットのサブセットのことです。
ミニバッチのサイズで学習サンプルの数を割り切ることができない場合、ソフトウェアは、各エポックの最後のミニバッチにちょうど収まらない学習データを破棄します。ミニバッチのサイズが学習サンプルの数より小さい場合、ソフトウェアはいかなるデータも破棄しません。
データ型: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
Shuffle
— データのシャッフルのオプション
"once"
(既定値) | "never"
| "every-epoch"
データのシャッフルのオプション。次のいずれかの値として指定します。
"once"
— 学習データと検証データを学習前に 1 回シャッフルします。"never"
— データをシャッフルしません。"every-epoch"
— 各学習エポックの前に学習データをシャッフルし、ニューラル ネットワークの各検証の前に検証データをシャッフルします。ミニバッチのサイズで学習サンプルの数を割り切ることができない場合、ソフトウェアは、各エポックの最後のミニバッチにちょうど収まらない学習データを破棄します。エポックごとに同じデータが破棄されるのを回避するには、Shuffle
学習オプションを"every-epoch"
に設定します。
InitialLearnRate
— 初期学習率
0.01
(既定値) | 正のスカラー
学習に使用される初期学習率。正のスカラーとして指定します。
学習率が小さすぎる場合、学習に時間がかかることがあります。学習率が大きすぎる場合、学習結果が準最適になったり、発散したりすることがあります。
データ型: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
LearnRateScheduleSettings
— 学習率のスケジュールの設定
構造体
この プロパティ は読み取り専用です。
学習率のスケジュールの設定。構造体として指定します。LearnRateScheduleSettings
にはフィールド Method
があります。このフィールドは、学習率を調整するメソッドのタイプを指定します。以下のメソッドを指定できます。
'none'
— 学習率は学習全体を通じて一定です。'piecewise'
— 学習中に学習率を定期的に下げます。
Method
が 'piecewise'
の場合、LearnRateScheduleSettings
にさらに 2 つのフィールドが含まれます。
DropRateFactor
— 学習中の学習率を低下させる乗法係数DropPeriod
— 学習中の各学習率調整の合間で通過するエポック数
学習率スケジュールの設定は、trainingOptions
を使用して指定します。
データ型: struct
Momentum
— 前のステップの寄与
0.9
(既定値) | 0
から 1
までのスカラー
モーメンタム項付き確率的勾配降下法における前の反復から現在の反復へのパラメーター更新ステップの寄与。0
から 1
までのスカラーとして指定します。
値 0
は前のステップからの寄与がないことを意味し、値 1
は前のステップからの寄与が最大であることを意味します。ほとんどのタスクにおいて、既定値で良い結果が得られます。
詳細については、モーメンタム項付き確率的勾配降下法を参照してください。
データ型: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
データ形式
InputDataFormats
— 入力データの次元の説明
"auto"
(既定値) | string 配列 | 文字ベクトルの cell 配列 | 文字ベクトル
R2023b 以降
入力データの次元の説明。string 配列、文字ベクトル、または文字ベクトルの cell 配列として指定します。
InputDataFormats
が "auto"
の場合、ソフトウェアは、ネットワークの入力で必要とされる形式を使用します。そうでない場合、ソフトウェアは、該当するネットワーク入力に対して指定された形式を使用します。
データの形式は文字列で、各文字はデータ内の対応する次元のタイプを表します。
各文字は以下のとおりです。
"S"
— 空間"C"
— チャネル"B"
— バッチ"T"
— 時間"U"
— 指定なし
たとえば、シーケンスのバッチを含み、1 番目、2 番目、および 3 番目の次元がそれぞれチャネル、観測値、およびタイム ステップに対応する配列の場合、"CBT"
の形式で指定できます。
"S"
または "U"
のラベルが付いた次元については、複数回指定できます。"C"
、"B"
、"T"
のラベルについては、1 回のみ使用できます。ソフトウェアは、2 番目の次元の後ろにある大きさ 1 の "U"
次元を無視します。
詳細については、Deep Learning Data Formatsを参照してください。
このオプションは関数 trainnet
のみをサポートします。
データ型: char
| string
| cell
TargetDataFormats
— ターゲット データの次元の説明
"auto"
(既定値) | string 配列 | 文字ベクトルの cell 配列 | 文字ベクトル
R2023b 以降
ターゲット データの次元の説明。次のいずれかの値として指定します。
"auto"
— ターゲット データと入力データの次元の数が同じ場合、関数trainnet
はInputDataFormats
で指定された形式を使用します。ターゲット データと入力データの次元の数が異なる場合、関数trainnet
は損失関数で必要とされる形式を使用します。データ形式 (string 配列、文字ベクトル、または文字ベクトルの cell 配列として指定) — 関数
trainnet
は指定されたデータ形式を使用します。
データの形式は文字列で、各文字はデータ内の対応する次元のタイプを表します。
各文字は以下のとおりです。
"S"
— 空間"C"
— チャネル"B"
— バッチ"T"
— 時間"U"
— 指定なし
たとえば、シーケンスのバッチを含み、1 番目、2 番目、および 3 番目の次元がそれぞれチャネル、観測値、およびタイム ステップに対応する配列の場合、"CBT"
の形式で指定できます。
"S"
または "U"
のラベルが付いた次元については、複数回指定できます。"C"
、"B"
、"T"
のラベルについては、1 回のみ使用できます。ソフトウェアは、2 番目の次元の後ろにある大きさ 1 の "U"
次元を無視します。
詳細については、Deep Learning Data Formatsを参照してください。
このオプションは関数 trainnet
のみをサポートします。
データ型: char
| string
| cell
監視
Plots
— ニューラル ネットワークの学習中に表示するプロット
"none"
(既定値) | "training-progress"
ニューラル ネットワークの学習中に表示するプロット。次のいずれかの値として指定します。
"none"
— 学習中にプロットを表示しません。"training-progress"
— 学習の進行状況をプロットします。
関数 trainnet
プロットには、ミニバッチ損失、検証損失、Metrics
プロパティで指定された学習ミニバッチと検証のメトリクス、および学習の進行状況に関する追加情報が表示されます。
学習後にプログラムで学習の進行状況プロットを開いたり閉じたりするには、関数 trainnet
の 2 番目の出力で関数 show
および close
を使用します。Plots
学習オプションが "none"
として指定されている場合でも、関数 show
を使用して学習の進行状況を表示できます。
関数 trainNetwork
プロットには、ミニバッチの損失と精度、検証の損失と精度、および学習の進行状況に関する追加情報が表示されます。trainNetwork
の学習の進行状況プロットの詳細については、深層学習における学習の進行状況の監視を参照してください。
Metrics
— 追跡するメトリクス
[]
(既定値) | 文字ベクトル | string 配列 | 関数ハンドル | cell 配列 | メトリクス オブジェクト
R2023b 以降
追跡するメトリクス。組み込みメトリクス名の文字ベクトルまたは string スカラー、名前の string 配列、組み込みまたはカスタムのメトリクス オブジェクト、関数ハンドル (@myMetric
) として指定するか、名前、メトリクス オブジェクト、および関数ハンドルの cell 配列として指定します。
組み込みメトリクス名 — 組み込みメトリクス名の string スカラー、文字ベクトル、または string 配列としてメトリクスを指定します。サポートされている値は、
"accuracy"
、"fscore"
、"recall"
、"precision"
、"rmse"
、および"auc"
です。組み込みメトリクス オブジェクト — より高い柔軟性が必要な場合は、組み込みメトリクス オブジェクトを使用できます。ソフトウェアは、次の組み込みメトリクス オブジェクトをサポートします。
組み込みメトリクス オブジェクトを作成するときは、平均化のタイプ、タスクが単一ラベルか複数ラベルかなどの追加オプションを指定できます。
カスタム メトリクス関数ハンドル — 組み込みメトリクス以外のメトリクスが必要な場合は、関数ハンドルを使用してカスタム メトリクスを指定できます。関数の構文は
metric = metricFunction(Y,T)
でなければなりません。ここで、Y
はネットワーク予測に対応し、T
はターゲット応答に対応します。複数の出力をもつネットワークの場合、構文はmetric = metricFunction(Y1,…,YN,T1,…TM)
でなければなりません。ここで、N
は出力の数、M
はターゲットの数です。詳細については、Define Custom Metric Functionを参照してください。メモ
ミニバッチに検証データが含まれる場合、ソフトウェアは各ミニバッチの検証メトリクスを計算し、それらの値の平均を返します。メトリクスによっては、この動作のために、検証セット全体を一度に使用してメトリクスを計算する場合とは異なるメトリクス値を取ることがあります。ほとんどの場合は、同様の値になります。検証データに対してバッチ平均されていないカスタム メトリクスを使用するには、カスタム メトリクス オブジェクトを作成しなければなりません。詳細については、Define Custom Deep Learning Metric Objectを参照してください。
カスタム メトリクス オブジェクト — より詳細なカスタマイズが必要な場合は、独自のカスタム メトリクス オブジェクトを定義できます。カスタム メトリクスの作成方法を示す例については、Define Custom F-Beta Score Metric Objectを参照してください。カスタム メトリクスの作成に関する一般的な情報については、Define Custom Deep Learning Metric Objectを参照してください。カスタム メトリクスは、関数
trainingOptions
のMetrics
オプションとして指定します。
このオプションは、関数 trainnet
と関数 trainBERTDocumentClassifier
(Text Analytics Toolbox) のみをサポートします。
例: Metrics=["accuracy","fscore"]
例: Metrics=["accuracy",@myFunction,precisionObj]
Verbose
— 学習の進行状況の情報を表示するためのフラグ
1
(true
) (既定値) | 0
(false
)
コマンド ウィンドウに学習の進行状況の情報を表示するためのフラグ。1
(true
) または 0
(false
) として指定します。
詳細出力の内容は、学習に使用する関数によって異なります。
関数 trainnet
関数 trainnet
を使用する場合、詳細出力には次の変数を含むテーブルが表示されます。
変数 | 説明 |
---|---|
Iteration | 反復回数 |
Epoch | エポック数 |
TimeElapsed | 経過時間 (時間、分、秒) |
LearnRate | 学習率 |
TrainingLoss | 学習損失 |
ValidationLoss | 検証損失。検証データを指定しない場合、ソフトウェアはこの情報を表示しません。 |
学習オプションで追加のメトリクスを指定した場合、詳細出力にもそれらのメトリクスが表示されます。たとえば、Metrics
学習オプションを "accuracy"
に設定した場合、変数 TrainingAccuracy
および ValidationAccuracy
もこの情報に含まれます。
学習が停止すると、詳細出力に停止の理由が表示されます。
検証データを指定するには、ValidationData
学習オプションを使用します。
関数 trainNetwork
関数 trainNetwork
を使用する場合、詳細出力にテーブルが表示されます。このテーブルの変数は、ニューラル ネットワークのタイプによって異なります。
分類ニューラル ネットワークの場合、このテーブルには次の変数が含まれます。
変数 | 説明 |
---|---|
Epoch | エポック数。1 エポックは、データを一巡することに対応します。 |
Iteration | 反復回数。反復は、ミニバッチに対応します。 |
Time Elapsed | 経過時間。時間、分、秒で示されます。 |
Mini-batch Accuracy | ミニバッチの分類精度。 |
Validation Accuracy | 検証データの分類精度。検証データを指定しない場合、ソフトウェアはこの情報を表示しません。 |
Mini-batch Loss | ミニバッチの損失。出力層が ClassificationOutputLayer オブジェクトの場合、損失は、互いに排他的なクラスを含むマルチクラス分類問題の交差エントロピー損失です。 |
Validation Loss | 検証データの損失。出力層が ClassificationOutputLayer オブジェクトの場合、損失は、互いに排他的なクラスを含むマルチクラス分類問題の交差エントロピー損失です。検証データを指定しない場合、ソフトウェアはこの情報を表示しません。 |
Base Learning Rate | 基本学習率。層の学習率係数とこの値が乗算されます。 |
回帰ニューラル ネットワークの場合、このテーブルには次の変数が含まれます。
変数 | 説明 |
---|---|
Epoch | エポック数。1 エポックは、データを一巡することに対応します。 |
Iteration | 反復回数。反復は、ミニバッチに対応します。 |
Time Elapsed | 経過時間。時間、分、秒で示されます。 |
Mini-batch RMSE | ミニバッチの平方根平均二乗誤差 (RMSE)。 |
Validation RMSE | 検証データの RMSE。検証データを指定しない場合、ソフトウェアはこの情報を表示しません。 |
Mini-batch Loss | ミニバッチの損失。出力層が RegressionOutputLayer オブジェクトの場合、損失は半平均二乗誤差になります。 |
Validation Loss | 検証データの損失。出力層が RegressionOutputLayer オブジェクトの場合、損失は半平均二乗誤差になります。検証データを指定しない場合、ソフトウェアはこの情報を表示しません。 |
Base Learning Rate | 基本学習率。層の学習率係数とこの値が乗算されます。 |
学習が停止すると、詳細出力に停止の理由が表示されます。
検証データを指定するには、ValidationData
学習オプションを使用します。
データ型: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
| logical
VerboseFrequency
— 詳細出力の頻度
50
(既定値) | 正の整数
コマンド ウィンドウへの表示間の反復回数を示す、詳細出力の頻度。正の整数として指定します。このオプションは、Verbose
学習オプションが 1
(true
) の場合にのみ効果があります。
学習中にニューラル ネットワークを検証する場合、ソフトウェアは、検証が行われるたびにコマンド ウィンドウにも出力します。
データ型: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
検証
ValidationData
— 学習中の検証に使用するデータ
[]
(既定値) | データストア | table | cell 配列
学習中の検証で使用するデータ。[]
として指定するか、検証予測子と検証応答を含むデータストア、table、または cell 配列として指定します。
学習中に、ソフトウェアは検証データの検証精度と検証損失を計算します。検証頻度を指定するには、ValidationFrequency
学習オプションを使用します。検証データを使用して、検証損失が減少しなくなったときに学習を自動的に停止することもできます。自動検証停止をオンにするには、ValidationPatience
学習オプションを使用します。
ValidationData
が []
の場合、学習中にニューラル ネットワークが検証されません。
ニューラル ネットワークに予測時と学習時で動作が異なる層 (ドロップアウト層など) がある場合、検証精度が学習精度より高くなる可能性があります。
検証データは、Shuffle
学習オプションに従ってシャッフルされます。Shuffle
が "every-epoch"
の場合、検証データはニューラル ネットワークの各検証の前にシャッフルされます。
サポートされている形式は、使用する学習関数によって異なります。
関数 trainnet
データストア、または cell 配列 {predictors,targets}
として検証データを指定します。ここで、predictors
には検証予測子を格納し、targets
には検証ターゲットを格納します。関数 trainnet
でサポートされているいずれかの形式を使用して、検証予測子と検証ターゲットを指定します。
詳細については、関数 trainnet
の入力引数を参照してください。
関数 trainNetwork
データストア、table、または cell 配列 {predictors,targets}
として検証データを指定します。ここで、predictors
には検証予測子を格納し、targets
には検証ターゲットを格納します。関数 trainNetwork
でサポートされているいずれかの形式を使用して、検証予測子と検証ターゲットを指定します。
詳細については、関数 trainNetwork
の入力引数を参照してください。
関数 trainBERTDocumentClassifier
(Text Analytics Toolbox)
検証データを次のいずれかの値として指定します。
cell 配列
{documents,targets}
。ここで、documents
には入力文書を格納し、targets
には文書のラベルを格納するtable。ここで、最初の変数には入力文書を格納し、2 番目の変数には文書のラベルを格納する。
詳細については、関数 trainBERTDocumentClassifier
(Text Analytics Toolbox) の入力引数を参照してください。
ValidationFrequency
— ニューラル ネットワークの検証の頻度
50
(既定値) | 正の整数
反復回数で示されるニューラル ネットワークの検証の頻度。正の整数として指定します。
ValidationFrequency
の値は、検証メトリクスの評価間の反復回数です。検証データを指定するには、ValidationData
学習オプションを使用します。
データ型: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
ValidationPatience
— 検証停止までの待機回数
Inf
(既定値) | 正の整数
ニューラル ネットワークの学習の検証を停止するまでの待機回数。正の整数または Inf
として指定します。
ValidationPatience
は、ニューラル ネットワークの学習が停止するまでに、検証セットでの損失が前の最小損失以上になることが許容される回数を指定します。ValidationPatience
が Inf
の場合、検証損失の値によって学習が早期に停止することはありません。
返されるニューラル ネットワークは、OutputNetwork
学習オプションによって異なります。検証損失が最小のニューラル ネットワークを返すようにするには、OutputNetwork
学習オプションを "best-validation-loss"
に設定します。
データ型: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
OutputNetwork
— 学習完了時に返すニューラル ネットワーク
"last-iteration"
(既定値) | "best-validation-loss"
学習完了時に返すニューラル ネットワーク。次のいずれかとして指定します。
"last-iteration"
– 最後の学習反復に対応するニューラル ネットワークを返す。"best-validation-loss"
– 検証損失が最小となる学習反復に対応するニューラル ネットワークを返す。このオプションを使用するには、ValidationData
学習オプションを指定しなければなりません。
正則化と正規化
L2Regularization
— L2 正則化の係数
0.0001
(既定値) | 非負のスカラー
L2 正則化 (重み減衰) の係数。非負のスカラーとして指定します。詳細については、L2 正則化を参照してください。
学習可能なパラメーターのあるニューラル ネットワーク層に対して L2 正則化の乗数を指定できます。詳細については、畳み込み層と全結合層のパラメーターの設定を参照してください。
データ型: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
ResetInputNormalization
— 入力層の正規化をリセットするオプション
1
(true
) (既定値) | 0
(false
)
入力層の正規化をリセットするオプション。次のいずれかに指定します。
1
(true
) — 入力層の正規化統計量をリセットし、学習時に再計算します。0
(false
) — 正規化統計量が空の場合、学習時に計算します。
データ型: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
| logical
BatchNormalizationStatistics
— バッチ正規化層の統計量を評価するモード
"auto"
(既定値) | "population"
| "moving"
バッチ正規化層の統計量を評価するモード。次のいずれかとして指定します。
"population"
— 母集団の統計量を使用します。学習終了後に学習データが再度渡され、その結果得られる平均と分散を使用して最終的な統計量が決定されます。"moving"
— 学習中、以下の更新ステップで与えられる実行時推定を使用して統計量を近似します。ここで、 と はそれぞれ更新後の平均と分散、 と はそれぞれ平均と分散の減衰値、 と はそれぞれ層入力の平均と分散、 と はそれぞれ移動平均と分散の値の最新値を表します。学習終了後、最後に得られた移動平均と分散の値が使用されます。このオプションは、CPU および単一の GPU による学習のみをサポートします。
"auto"
— 関数trainnet
の場合は"moving"
オプションを使用し、関数trainNetwork
の場合は"population"
オプションを使用します。
勾配クリップ
GradientThreshold
— 勾配のしきい値
Inf
(既定値) | 正のスカラー
勾配のしきい値。Inf
または正のスカラーとして指定します。勾配が GradientThreshold
の値を超えた場合、勾配は GradientThresholdMethod
学習オプションに応じてクリップされます。
詳細については、勾配クリップを参照してください。
データ型: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
GradientThresholdMethod
— 勾配しきい値法
"l2norm"
(既定値) | "global-l2norm"
| "absolute-value"
勾配のしきい値を超えた勾配の値をクリップするために使用する勾配しきい値法。次のいずれかに指定します。
"l2norm"
— 学習可能なパラメーターの勾配の L2 ノルムがGradientThreshold
より大きい場合は、L2 ノルムがGradientThreshold
に等しくなるように勾配をスケーリングします。"global-l2norm"
— グローバル L2 ノルム L がGradientThreshold
より大きい場合は、すべての勾配をGradientThreshold/
L 倍にスケーリングします。グローバル L2 ノルムでは、すべての学習可能なパラメーターが考慮されます。"absolute-value"
— 学習可能なパラメーターの勾配に含まれる偏微分のうち、絶対値がGradientThreshold
より大きいものについては、偏微分の符号を維持したまま、大きさがGradientThreshold
に等しくなるように偏微分をスケーリングします。
詳細については、勾配クリップを参照してください。
シーケンス
SequenceLength
— シーケンスのパディングまたは切り捨てを行うオプション
"longest"
(既定値) | "shortest"
| 正の整数
入力シーケンスのパディング、切り捨て、または分割を行うオプション。次のいずれかに指定します。
"longest"
— 各ミニバッチで、最長のシーケンスと同じ長さになるようにシーケンスのパディングを行います。このオプションを使用するとデータは破棄されませんが、パディングによってニューラル ネットワークにノイズが生じることがあります。"shortest"
— 各ミニバッチで、最短のシーケンスと同じ長さになるようにシーケンスの切り捨てを行います。このオプションを使用するとパディングは追加されませんが、データが破棄されます。正の整数 — 各ミニバッチについて、そのミニバッチ内で最も長いシーケンスに合わせてシーケンスをパディングした後、指定した長さのより小さいシーケンスに分割します。分割が発生すると、追加のミニバッチが作成されます。指定したシーケンス長によってデータのシーケンスを均等に分割できない場合、最後のシーケンスを含むミニバッチの長さは指定した長さより短くなります。シーケンス全体がメモリに収まらない場合は、このオプションを使用します。または、
MiniBatchSize
オプションをより小さい値に設定して、ミニバッチごとのシーケンス数を減らしてみます。このオプションは関数
trainNetwork
のみをサポートします。
入力シーケンスのパディング、切り捨て、および分割の効果の詳細は、シーケンスのパディング、切り捨て、および分割を参照してください。
データ型: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
| char
| string
SequencePaddingDirection
— パディングまたは切り捨ての方向
"right"
(既定値) | "left"
パディングまたは切り捨ての方向。次のいずれかに指定します。
"right"
— シーケンスの右側に対してパディングまたは切り捨てを行います。シーケンスは同じタイム ステップで始まり、シーケンスの末尾に対して切り捨てまたはパディングの追加が行われます。"left"
— シーケンスの左側に対してパディングまたは切り捨てを行います。シーケンスが同じタイム ステップで終わるように、シーケンスの先頭に対して切り捨てまたはパディングの追加が行われます。
再帰層は 1 タイム ステップずつシーケンス データを処理するため、再帰層の OutputMode
プロパティが "last"
の場合、最後のタイム ステップでパディングを行うと層の出力に悪影響を与える可能性があります。シーケンス データの左側に対してパディングまたは切り捨てを行うには、SequencePaddingDirection
オプションを "left"
に設定します。
sequence-to-sequence ニューラル ネットワークの場合 (各再帰層について OutputMode
プロパティが "sequence"
である場合)、最初のタイム ステップでパディングを行うと、それ以前のタイム ステップの予測に悪影響を与える可能性があります。シーケンスの右側に対してパディングまたは切り捨てを行うには、SequencePaddingDirection
オプションを "right"
に設定します。
入力シーケンスのパディング、切り捨て、および分割の効果の詳細は、シーケンスのパディング、切り捨て、および分割を参照してください。
SequencePaddingValue
— シーケンスをパディングする値
0
(既定値) | スカラー
入力シーケンスをパディングする値。スカラーとして指定します。
ニューラル ネットワーク全体にエラーが伝播される可能性があるため、NaN
でシーケンスをパディングしないでください。
データ型: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
ハードウェア
ExecutionEnvironment
— ニューラル ネットワークの学習用のハードウェア リソース
"auto"
(既定値) | "cpu"
| "gpu"
| "multi-gpu"
| "parallel"
| "parallel-auto"
| "parallel-cpu"
| "parallel-gpu"
ニューラル ネットワークの学習用のハードウェア リソース。次のいずれかの値として指定します。
実行環境 | 使用するハードウェア リソース |
---|---|
"auto" | 利用可能な場合、ローカル GPU を使用します。そうでない場合、ローカル CPU を使用します。 |
"cpu" | ローカル CPU を使用します。 |
"gpu" | ローカル GPU を使用します。 |
"multi-gpu" | 既定のクラスター プロファイルに基づいてローカルの並列プールを使用して、1 つのマシンで複数の GPU を使用します。現在の並列プールがない場合、使用可能な GPU の数と等しいプール サイズの並列プールが起動されます。 |
"parallel" | ローカルまたはリモートの並列プールを使用します。現在の並列プールがない場合、既定のクラスター プロファイルを使用して 1 つのプールが起動されます。プールから GPU にアクセスできる場合、固有の GPU をもつワーカーのみが学習計算を実行し、余ったワーカーはアイドル状態になります。プールに GPU がない場合、代わりに使用可能なすべての CPU ワーカーで学習が実行されます。 |
"parallel-auto" |
|
"parallel-cpu" |
|
"parallel-gpu" |
|
"gpu"
、"multi-gpu"
、"parallel"
、"parallel-auto"
、"parallel-cpu"
、および "parallel-gpu"
のオプションを使用するには、Parallel Computing Toolbox™ が必要です。深層学習に GPU を使用するには、サポートされている GPU デバイスもなければなりません。サポートされているデバイスについては、GPU 計算の要件 (Parallel Computing Toolbox)を参照してください。これらのいずれかのオプションの選択時に Parallel Computing Toolbox または適切な GPU を利用できない場合、エラーが返されます。
さまざまな実行環境をどのような場合に使用するかの詳細は、Scale Up Deep Learning in Parallel, on GPUs, and in the Cloudを参照してください。
並列学習の実行時に性能の改善を確認するには、MiniBatchSize
および InitialLearnRate
学習オプションを GPU の数でスケール アップしてみてください。
関数 trainNetwork
を使用してネットワークに学習させる場合、"multi-gpu"
オプションと "parallel"
オプションは、状態パラメーターをもつカスタム層や学習時にステートフルである組み込み層を含むニューラル ネットワークをサポートしません。次に例を示します。
SequenceLength
学習オプションが正の整数の場合のLSTMLayer
オブジェクト、BiLSTMLayer
オブジェクト、GRULayer
オブジェクトなどの再帰層BatchNormalizationStatistics
学習オプションが"moving"
に設定されている場合のBatchNormalizationLayer
オブジェクト
WorkerLoad
— 並列ワーカーの負荷分割
0
から 1
までのスカラー | 正の整数 | 数値ベクトル
GPU 間または CPU 間での並列ワーカーの負荷分割。次のいずれかとして指定します。
0
から1
までのスカラー — ニューラル ネットワーク学習計算に使用する各マシンのワーカーの割合。バックグラウンド ディスパッチを有効にしたミニバッチ データストアのデータを使用してニューラル ネットワークに学習させる場合、残りのワーカーはバックグラウンドでデータを取得して処理します。正の整数 — ニューラル ネットワーク学習計算に使用する各マシンのワーカー数。バックグラウンド ディスパッチを有効にしたミニバッチ データストアのデータを使用してニューラル ネットワークに学習させる場合、残りのワーカーはバックグラウンドでデータを取得して処理します。
数値ベクトル — 並列プール内の各ワーカーのニューラル ネットワーク学習の負荷。ベクトル
W
の場合、ワーカーi
はW(i)/sum(W)
の割合の作業 (ミニバッチあたりの例の数) を取得します。バックグラウンド ディスパッチを有効にしたミニバッチ データストアのデータを使用してニューラル ネットワークに学習させる場合、ワーカーの負荷を 0 にすることで、そのワーカーをバックグラウンドでのデータ取得に使用できます。指定するベクトルには、並列プール内のワーカーごとに 1 つの値が含まれていなければなりません。
並列プールから GPU にアクセスできる場合、固有の GPU を持たないワーカーは学習計算に使用されません。GPU を持つプールの場合、既定では、固有の GPU を持つすべてのワーカーを学習計算に使用し、残りのワーカーをバックグラウンド ディスパッチに使用します。プールから GPU にアクセスできず、CPU を学習に使用する場合、既定では、マシンあたり 1 つのワーカーをバックグラウンド データ ディスパッチに使用します。
このオプションは、確率的ソルバーのみをサポートします (引数 solverName
が "sgdm"
、"adam"
、または "rmsprop"
の場合)。
このオプションは関数 trainNetwork
のみをサポートします。
データ型: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
DispatchInBackground
— バックグラウンド ディスパッチを有効にするフラグ
0
(false
) (既定値) | 1
(true
)
バックグラウンド ディスパッチを有効にするフラグ。0
(false
) または 1
(true
) として指定します。
バックグラウンド ディスパッチでは、並列ワーカーを使用して、学習の際にデータストアからデータを取得し、前処理します。ミニバッチに大幅な前処理が必要な場合は、このオプションを使用します。バックグラウンド ディスパッチをどのような場合に使用するかの詳細については、並列学習およびバックグラウンド ディスパッチへのデータストアの使用を参照してください。
DispatchInBackground
が true
に設定されている場合、ローカル プールが開かれていなければ、ソフトウェアは既定のプロファイルを使用してローカル並列プールを開きます。ローカルではない並列プールはサポートされません。
このオプションを使用するには、Parallel Computing Toolbox が必要です。入力データストアはサブセット化または分割が可能でなければなりません。このオプションを使用するには、カスタム データストアに matlab.io.datastore.Subsettable
クラスが実装されていなければなりません。
このオプションは、確率的ソルバーのみをサポートします (引数 solverName
が "sgdm"
、"adam"
、または "rmsprop"
の場合)。
並列で学習させる場合、このオプションは関数 trainnet
をサポートしません。
データ型: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
チェックポイント
CheckpointPath
— チェックポイント ニューラル ネットワークの保存用のパス
""
(既定値) | string スカラー | 文字ベクトル
チェックポイント ニューラル ネットワークの保存用のパス。string スカラーまたは文字ベクトルとして指定します。
パスを指定しない (既定の
""
を使用する) 場合、チェックポイント ニューラル ネットワークは保存されません。パスを指定すると、ソフトウェアによってこのパスにチェックポイント ニューラル ネットワークが保存され、各ニューラル ネットワークに一意の名前が割り当てられます。その後、いずれかのチェックポイント ニューラル ネットワークを読み込み、そのニューラル ネットワークから学習を再開できます。
フォルダーが存在していない場合、チェックポイント ニューラル ネットワークを保存するパスを指定する前に、まずフォルダーを作成しなければなりません。指定したパスが存在していない場合、ソフトウェアはエラーをスローします。
ニューラル ネットワーク チェックポイントの保存の詳細については、チェックポイント ネットワークの保存と学習の再開を参照してください。
データ型: char
| string
CheckpointFrequency
— チェックポイント ニューラル ネットワークを保存する頻度
1
(既定値) | 正の整数
チェックポイント ニューラル ネットワークを保存する頻度。正の整数として指定します。
CheckpointFrequencyUnit
が "epoch"
の場合、ソフトウェアは CheckpointFrequency
エポックごとにチェックポイント ニューラル ネットワークを保存します。
CheckpointFrequencyUnit
が "iteration"
の場合、ソフトウェアは CheckpointFrequency
回の反復ごとにチェックポイント ニューラル ネットワークを保存します。
このオプションは、CheckpointPath
が空でない場合にのみ有効です。
データ型: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
CheckpointFrequencyUnit
— チェックポイントの頻度の単位
"epoch"
(既定値) | "iteration"
チェックポイントの頻度の単位。"epoch"
または "iteration"
として指定します。
CheckpointFrequencyUnit
が "epoch"
の場合、ソフトウェアは CheckpointFrequency
エポックごとにチェックポイント ニューラル ネットワークを保存します。
CheckpointFrequencyUnit
が "iteration"
の場合、ソフトウェアは CheckpointFrequency
回の反復ごとにチェックポイント ニューラル ネットワークを保存します。
このオプションは、CheckpointPath
が空でない場合にのみ有効です。
OutputFcn
— 出力関数
関数ハンドル | 関数ハンドルの cell 配列
学習中に呼び出す出力関数。関数ハンドル、または関数ハンドルの cell 配列として指定します。ソフトウェアは、学習の開始前、各反復後、および学習の完了時に関数を 1 回呼び出します。
関数の構文は stopFlag = f(info)
でなければなりません。ここで、info
は学習の進行状況に関する情報が格納される構造体、stopFlag
は学習を早期に停止させることを示すスカラーです。stopFlag
が 1
(true
) の場合、ソフトウェアは学習を停止させます。それ以外の場合、ソフトウェアは学習を続行します。
構造体 info
のフィールドは、使用する学習関数によって異なります。
関数 trainnet
関数 trainnet
は、次のフィールドをもつ構造体 info
を出力関数に渡します。
フィールド | 説明 |
---|---|
Epoch | エポック数 |
Iteration | 反復回数 |
TimeElapsed | 学習開始からの時間 |
LearnRate | 反復での学習率 |
TrainingLoss | 反復での学習損失 |
ValidationLoss | 検証損失 (反復時に指定されて評価される場合)。 |
State | 反復での学習状態。"start" 、"iteration" 、または "done" として指定します。 |
学習オプションで追加のメトリクスを指定した場合、学習情報にもそれらのメトリクスが表示されます。たとえば、Metrics
学習オプションを "accuracy"
に設定した場合、フィールド TrainingAccuracy
および ValidationAccuracy
もこの情報に含まれます。
フィールドが計算されない、または出力関数の特定の呼び出しに関連していない場合、そのフィールドには空の配列が含まれます。
出力関数の使用方法を示す例は、深層学習ネットワークの学習時の出力のカスタマイズを参照してください。
関数 trainNetwork
関数 trainNetwork
は、次のフィールドをもつ構造体 info
を出力関数に渡します。
フィールド | 説明 |
---|---|
Epoch | 現在のエポック数 |
Iteration | 現在の反復回数 |
TimeSinceStart | 学習を開始してからの時間 (秒単位) |
TrainingLoss | 現在のミニバッチの損失 |
ValidationLoss | 検証データの損失 |
BaseLearnRate | 現在の基本学習率 |
TrainingAccuracy | 現在のミニバッチの精度 (分類ニューラル ネットワーク) |
TrainingRMSE | 現在のミニバッチの RMSE (回帰ニューラル ネットワーク) |
ValidationAccuracy | 検証データの精度 (分類ニューラル ネットワーク) |
ValidationRMSE | 検証データの RMSE (回帰ニューラル ネットワーク) |
State | 現在の学習の状態 (可能な値は "start" 、"iteration" 、または "done" ) |
フィールドが計算されない場合、または出力関数の呼び出しに関連していない場合、そのフィールドには空の配列が格納されます。
出力関数の使用方法を示す例は、深層学習ネットワークの学習時の出力のカスタマイズを参照してください。
データ型: function_handle
| cell
例
学習オプションの指定
モーメンタム項付き確率的勾配降下法を使用したネットワーク学習の一連のオプションを作成します。5 エポックごとに 0.2 ずつ学習率を下げます。学習のエポックの最大回数を 20 に設定し、反復ごとに 64 個の観測値があるミニバッチを使用します。学習の進行状況プロットをオンにします。
options = trainingOptions("sgdm", ... LearnRateSchedule="piecewise", ... LearnRateDropFactor=0.2, ... LearnRateDropPeriod=5, ... MaxEpochs=20, ... MiniBatchSize=64, ... Plots="training-progress")
options = TrainingOptionsSGDM with properties: Momentum: 0.9000 InitialLearnRate: 0.0100 MaxEpochs: 20 LearnRateSchedule: 'piecewise' LearnRateDropFactor: 0.2000 LearnRateDropPeriod: 5 MiniBatchSize: 64 Shuffle: 'once' WorkerLoad: [] CheckpointFrequency: 1 CheckpointFrequencyUnit: 'epoch' SequenceLength: 'longest' DispatchInBackground: 0 L2Regularization: 1.0000e-04 GradientThresholdMethod: 'l2norm' GradientThreshold: Inf Verbose: 1 VerboseFrequency: 50 ValidationData: [] ValidationFrequency: 50 ValidationPatience: Inf CheckpointPath: '' ExecutionEnvironment: 'auto' OutputFcn: [] Metrics: [] Plots: 'training-progress' SequencePaddingValue: 0 SequencePaddingDirection: 'right' InputDataFormats: "auto" TargetDataFormats: "auto" ResetInputNormalization: 1 BatchNormalizationStatistics: 'auto' OutputNetwork: 'last-iteration'
アルゴリズム
確率的勾配降下法
標準の勾配降下法アルゴリズムは、各反復で損失の負の勾配の方向に小さいステップで進むことによって損失関数を最小化するように、ネットワーク パラメーター (重みとバイアス) を更新します。
ここで、 は反復回数、 は学習率、 はパラメーター ベクトル、 は損失関数を意味します。標準の勾配降下法アルゴリズムでは、損失関数の勾配 は、学習セット全体を使用して評価されます。標準の勾配降下法アルゴリズムでは、データ セット全体を一度に使用します。
一方、"確率的" 勾配降下法アルゴリズムは、各反復で学習データのサブセットを使用して勾配を評価し、パラメーターを更新します。各反復ではミニバッチと呼ばれる別のサブセットが使用されます。ミニバッチを使用して、学習セット全体に対する学習アルゴリズムを一巡することを、1 "エポック" と言います。確率的勾配降下が確率的と言われるのは、ミニバッチを使用して計算されたパラメーター更新が、データセット全体を使用して得られるパラメーター更新のノイズを含む推定であるためです。
モーメンタム項付き確率的勾配降下法
確率的勾配降下法アルゴリズムは、最適値への最急降下経路に沿って振動することがあります。パラメーター更新へのモーメンタム項の追加は、この振動を減らす方法の 1 つです[2]。モーメンタム項付き確率的勾配降下法 (SGDM) の更新は、以下のとおりです。
ここで、学習率 α とモーメンタム項の値 は、前の勾配ステップから現在の反復への寄与を決定します。
L2 正則化
損失関数 への重みの正則化項の追加は、過適合を抑える方法の 1 つです[1]、[2]。正則化項は、"重み減衰" とも呼ばれます。正則化項付きの損失関数は、以下の形式を取ります。
ここで、 は重みベクトル、 は正則化係数です。正則化関数 は以下のようになります。
バイアスは正則化されないことに注意してください[2]。L2Regularization
学習オプションを使用して、正則化係数 を指定できます。層やパラメーターごとに異なる正則化係数を指定することもできます。詳細については、畳み込み層と全結合層のパラメーターの設定を参照してください。
ネットワーク学習に使用される損失関数には、正則化項が含まれます。ただし、学習中にコマンド ウィンドウと学習の進行状況プロットに表示される損失値はデータのみの損失であり、正則化項は含まれません。
勾配クリップ
勾配の大きさが指数関数的に増加する場合、学習は不安定になり、数回の反復で発散する場合があります。この "勾配爆発" は、学習損失が NaN
または Inf
になることによって示されます。勾配クリップは、学習率が大きい場合や外れ値が存在する場合に学習を安定させることによって、勾配爆発を防ぎます[3]。勾配クリップを使用すると、ネットワークの学習が高速になり、通常は学習済みタスクの精度に影響はありません。
勾配クリップは 2 種類あります。
ノルムベースの勾配クリップでは、しきい値に基づいて勾配を再スケーリングし、勾配の方向は変更しません。
GradientThresholdMethod
の"l2norm"
値と"global-l2norm"
値は、ノルムベースの勾配クリップ法です。値ベースの勾配クリップでは、しきい値より大きい任意の偏微分をクリップします。この場合、勾配の方向が任意に変化する可能性があります。値ベースの勾配クリップの動作は予測できないものになる場合がありますが、変化が十分に小さければ、ネットワークが発散することはありません。
GradientThresholdMethod
の値"absolute-value"
は、値ベースの勾配クリップ法です。
参照
[1] Bishop, C. M. Pattern Recognition and Machine Learning. Springer, New York, NY, 2006.
[2] Murphy, K. P. Machine Learning: A Probabilistic Perspective. The MIT Press, Cambridge, Massachusetts, 2012.
[3] Pascanu, R., T. Mikolov, and Y. Bengio. "On the difficulty of training recurrent neural networks". Proceedings of the 30th International Conference on Machine Learning. Vol. 28(3), 2013, pp. 1310–1318.
バージョン履歴
R2016a で導入R2023b: 入力とターゲットのデータ形式の指定
入力とターゲットのデータ形式は、それぞれ InputDataFormats
オプションおよび TargetDataFormats
オプションを使用して指定します。
このオプションは関数 trainnet
のみをサポートします。
R2023b: CPU リソースのみまたは GPU リソースのみを使用したニューラル ネットワークの並列学習
ExecutionEnvironment
を "parallel-cpu"
または "parallel-gpu"
として指定することで、特定のハードウェア リソースを使用してニューラル ネットワークの並列学習を行います。
このオプションは関数 trainnet
のみをサポートします。
R2023b: BatchNormalizationStatistics
の既定は "auto"
R2023b 以降、BatchNormalizationStatistics
学習オプションの既定値は "auto"
になります。
この変更は関数の動作には影響しません。BatchNormalizationStatistics
プロパティをチェックするコードがある場合は、"auto"
オプションに対応するようにコードを更新します。
R2022b: SequenceLength
学習オプションを整数として指定した場合、trainNetwork
は、分割を行う前に最も長いシーケンスに合わせてミニバッチをパディングする
R2022b 以降、関数 trainNetwork
を使用してシーケンス データでニューラル ネットワークに学習させるときに、SequenceLength
オプションが整数である場合、各ミニバッチ内で最も長いシーケンスに合わせてシーケンスがパディングされた後、指定したシーケンス長でシーケンスが分割されてミニバッチが作成されます。SequenceLength
によってミニバッチのシーケンスを均等に分割できない場合、最後に分割されたミニバッチの長さは SequenceLength
より短くなります。この動作によって、パディング値しか含まれないタイム ステップでニューラル ネットワークの学習が行われるのを防ぐことができます。
以前のリリースでは、SequenceLength
の倍数に最も近く、かつミニバッチ長以上の長さとなるように、シーケンスのミニバッチをパディングしてから、データが分割されていました。この動作を再現するには、カスタム学習ループを使用し、データのミニバッチを前処理するタイミングでこの動作を実装します。
R2018b: ValidationPatience
学習オプションの既定値は Inf
R2018b 以降では、ValidationPatience
学習オプションの既定値が Inf
になっています。これは、検証による自動停止がオフであることを意味します。これにより、データから十分に学習する前に学習が停止するのを防ぎます。
以前のバージョンの既定値は 5
です。この動作を再現するには、ValidationPatience
オプションを 5
に設定します。
MATLAB コマンド
次の MATLAB コマンドに対応するリンクがクリックされました。
コマンドを MATLAB コマンド ウィンドウに入力して実行してください。Web ブラウザーは MATLAB コマンドをサポートしていません。
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list:
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)