ドキュメンテーション

最新のリリースでは、このページがまだ翻訳されていません。 このページの最新版は英語でご覧になれます。

googlenet

事前学習済み GoogLeNet 畳み込みニューラル ネットワーク

構文

net = googlenet

説明

net = googlenet は、事前学習済みの GoogLeNet モデルを返します。このモデルは、ImageNet データベース [1] のサブセットについて学習します。このデータベースは、ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) で使用されています。このモデルは、100 万枚を超えるイメージについて学習済みであり、イメージを 1000 個のオブジェクト カテゴリ (キーボード、マウス、鉛筆、多くの動物など) に分類できます。結果として、このモデルは広範囲のイメージに対する豊富な特徴表現を学習しています。

この関数には、Neural Network Toolbox™ Model for GoogLeNet Network サポート パッケージが必要です。このサポート パッケージがインストールされていない場合、関数によってダウンロード用リンクが表示されます。

すべて折りたたむ

Neural Network Toolbox Model for GoogLeNet Network サポート パッケージをダウンロードしてインストールします。

コマンド ラインで googlenet と入力します。

googlenet

Neural Network Toolbox Model for GoogLeNet Network サポート パッケージがインストールされていない場合、関数によってアドオン エクスプローラーに必要なサポート パッケージへのリンクが表示されます。サポート パッケージをインストールするには、リンクをクリックして、[インストール] をクリックします。コマンド ラインで googlenet と入力して、インストールが正常に終了していることを確認します。必要なサポート パッケージがインストールされていない場合、関数によって DAGNetwork オブジェクトが返されます。

googlenet
ans = 

  DAGNetwork with properties:

         Layers: [144×1 nnet.cnn.layer.Layer]
    Connections: [170×2 table]

出力引数

すべて折りたたむ

事前学習済みの GoogLeNet 畳み込みニューラル ネットワーク。DAGNetwork オブジェクトとして返されます。

参照

[1] ImageNet. http://www.image-net.org

[2] Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. "Going deeper with convolutions." In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1-9. 2015.

R2017b で導入