MathWorks - Mobile View
  • MathWorks 㚢㚫㚦㒳㒆への㚵㚤㒳㚤㒳MathWorks 㚢㚫㚦㒳㒆への㚵㚤㒳㚤㒳
  • Access your MathWorks Account
    • マイ アカウント
    • コミュニティのプロファイル
    • ライセンスを関連付ける
    • サインアウト
  • 製品
  • ソリューション
  • アカデミア
  • サポート
  • コミュニティ
  • イベント
  • MATLAB を入手する
MathWorks
  • 製品
  • ソリューション
  • アカデミア
  • サポート
  • コミュニティ
  • イベント
  • MATLAB を入手する
  • MathWorks 㚢㚫㚦㒳㒆への㚵㚤㒳㚤㒳MathWorks 㚢㚫㚦㒳㒆への㚵㚤㒳㚤㒳
  • Access your MathWorks Account
    • マイ アカウント
    • コミュニティのプロファイル
    • ライセンスを関連付ける
    • サインアウト

ビデオ・Webセミナー

  • MathWorks
  • ビデオ
  • ビデオ ホーム
  • 検索
  • ビデオ ホーム
  • 検索
  • 営業へのお問い合わせ
  • 評価版
  Register to watch video
  • Description
  • Full Transcript
  • Related Resources

Using GPU Coder to Prototype and Deploy on NVIDIA Drive, Jetson

Ram Cherukuri, MathWorks

Learn how you can use GPU Coder hardware support package for NVIDIA® GPUs to prototype, verify, and deploy your deep learning models and algorithms in MATLAB® for embedded vision, autonomous driving applications on NVIDIA GPUs like the NVIDIA Drive, and Jetson platforms. You can prototype and verify your algorithms using live data from the sensors connected to NVIDIA Drive or Jetson platforms in MATLAB. You can also run hardware-in-the-loop tests with your validation data in MATLAB. Finally, you can cross-compile and deploy your application to the NVIDIA GPUs.

GPU coder generates portable and optimized CUDA code for your complete, deep learning algorithm in MATLAB, which includes the preprocessing and postprocessing application logic along with the trained neural network.

Using the GPU coder hardware support package for NVIDIA GPUs use, you can build and deploy your algorithms directly from MATLAB to NVIDIA GPUs, suggest the NVIDIA drive and Jetson platforms directly from MATLAB.

Here we have the semantic segmentation algorithm deployed on a drive PX2. And similarly, on the Jetson Xavier, we have the semantic segmentation application running.

Once you have built your deep-learning algorithm in MATLAB, the hardware support package lets us prototype your algorithm using live data from the hardware. And you can test the robustness of your algorithm on your workstation before deploying to the target.

For instance, we have a deep-learning algorithm built around a trained VGG network for semantic segmentation as an example here in MATLAB. And it works well on my test image input.

Now, using these APIs that are provided by the support package, I can connect to the NVIDIA drive board, read the input from the camera sensor connected to the board, and run the inference in MATLAB. We have a dry PX2 in one of our labs here, and we have the camera pointed out of the window overlooking some foliage here in New England.

And you can see that the algorithm works on the live data. There are some artifacts, like clouds and the construction, which are not part of the training data. So I can iterate and update the algorithm to improve its robustness.

The next step would be to generate code from the algorithm using the cod generation APIS as shown here. You can build and deploy your application to the target GPU both on a Windows or Linux machine using these APIs. And the generated code includes the interfaces to the camera and the display on the drive.

Here is the semantic segmentation application compiled from the generated code that we can launch as a standalone application on the drive PX2. Following a similar workflow and changing just a couple of options, we have also deployed the same algorithm on the Jetson Xavier board as was shown earlier.

To learn more, refer to the GPU coder resources link below, and you can try this example by downloading the support package from the add-on gallery.

Related Products

  • GPU Coder
  • Deep Learning Toolbox
  • MATLAB Coder

Feedback

Featured Product

GPU Coder

  • Request Trial
  • Get Pricing

Up Next:

11:24
Addressing Implementation Constraints Using MATLAB Coder

Related Videos:

2:58
Unit Testing Your Generated Code Using MATLAB Coder
0:26
Deploying to iPhone and iPad Apps Using MATLAB Coder
4:17
Integrate Code into Visual Studio Using MATLAB Coder
4:19
Unit Testing C Code Using MATLAB and MATLAB Coder

View more related videos

MathWorks - Domain Selector

Select a Web Site

Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .

Select web site

You can also select a web site from the following list:

How to Get Best Site Performance

Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.

Americas

  • América Latina (Español)
  • Canada (English)
  • United States (English)

Europe

  • Belgium (English)
  • Denmark (English)
  • Deutschland (Deutsch)
  • España (Español)
  • Finland (English)
  • France (Français)
  • Ireland (English)
  • Italia (Italiano)
  • Luxembourg (English)
  • Netherlands (English)
  • Norway (English)
  • Österreich (Deutsch)
  • Portugal (English)
  • Sweden (English)
  • Switzerland
    • Deutsch
    • English
    • Français
  • United Kingdom (English)

Asia Pacific

  • Australia (English)
  • India (English)
  • New Zealand (English)
  • 中国
    • 简体中文Chinese
    • English
  • 日本Japanese (日本語)
  • 한국Korean (한국어)

Contact your local office

  • 営業へのお問い合わせ
  • 評価版

製品を見る

  • MATLAB
  • Simulink
  • 学生向けソフトウェア
  • ハードウェア サポート
  • File Exchange
試す、購入する
  • ダウンロード
  • 評価版ソフトウェア
  • 営業へのお問い合わせ
  • 価格とライセンス
使い方を学ぶ
  • ドキュメンテーション
  • チュートリアル
  • MATLAB の例
  • ビデオ・Webセミナー
  • トレーニング

サポートを受ける

  • インストールのヘルプ
  • MATLAB Answers
  • 技術コンサルティング
  • ライセンスセンター
  • サポートへのお問い合わせ

MathWorks について

  • 採用情報
  • ニュースルーム
  • 社会貢献
  • 営業へのお問い合わせ
  • MathWorks について

MathWorks

Accelerating the pace of engineering and science

MathWorksはエンジニアや研究者向け数値解析ソフトウェアのリーディングカンパニーです。

ディスカバー…

  • Select a Web Site United States
  • 特許
  • 商標
  • プライバシー ポリシー
  • 違法コピー防止
  • アプリケーション ステータス

© 1994-2021 The MathWorks, Inc.

  • Facebook
  • Twitter
  • Instagram
  • YouTube
  • LinkedIn
  • RSS

MATLAB を語ろう