Implementation of a Virtual Sensor on an ECU Using Recurrent Neural Networks
Katja Deuschl, Mercedes-Benz
Advanced technologies such as artificial intelligence offer new opportunities to improve existing software development processes in a modern vehicle. Oftentimes such improvements can be accomplished through exact knowledge of critical vehicle states and inputs. Using physical sensors for such tasks can be expensive or even impossible, and the implementation of an alternative virtual sensor using artificial intelligence offers significant advantages. However, many times the deployment to embedded hardware can be challenging. Typically, memory footprint is crucial on embedded hardware and production code needs to be optimized. In this session, see how a virtual pressure sensor, developed with a recurrent neural network, can be implemented in a production code generation tool chain using only fixed-point datatype. The newly implemented workflows are fully automated and were developed in a joint project between MathWorks and Mercedes-Benz.
Published: 22 Nov 2022
Related Products
Learn More
Featured Product
Deep Learning Toolbox
Up Next:
Related Videos:
Web サイトの選択
Web サイトを選択すると、翻訳されたコンテンツにアクセスし、地域のイベントやサービスを確認できます。現在の位置情報に基づき、次のサイトの選択を推奨します:
また、以下のリストから Web サイトを選択することもできます。
最適なサイトパフォーマンスの取得方法
中国のサイト (中国語または英語) を選択することで、最適なサイトパフォーマンスが得られます。その他の国の MathWorks のサイトは、お客様の地域からのアクセスが最適化されていません。
南北アメリカ
- América Latina (Español)
- Canada (English)
- United States (English)
ヨーロッパ
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
アジア太平洋地域
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)