Skip to content
MathWorks - Mobile View
  • MathWorks アカウントへのサインインMathWorks アカウントへのサインイン
  • Access your MathWorks Account
    • マイ アカウント
    • コミュニティのプロファイル
    • ライセンスを関連付ける
    • サインアウト
  • 製品
  • ソリューション
  • アカデミア
  • サポート
  • コミュニティ
  • イベント
  • MATLAB を入手する
MathWorks
  • 製品
  • ソリューション
  • アカデミア
  • サポート
  • コミュニティ
  • イベント
  • MATLAB を入手する
  • MathWorks アカウントへのサインインMathWorks アカウントへのサインイン
  • Access your MathWorks Account
    • マイ アカウント
    • コミュニティのプロファイル
    • ライセンスを関連付ける
    • サインアウト

ビデオ・Webセミナー

  • MathWorks
  • ビデオ
  • ビデオ ホーム
  • 検索
  • ビデオ ホーム
  • 検索
  • 営業へのお問い合わせ
  • 評価版
24:56 Video length is 24:56.
  • Description
  • Related Resources

Optimal Neural Network for Automotive Product Development

Dr. Angela Bernardini, CITEAN

Virtual engineering technology has undergone rapid progress in recent years and has been widely accepted for commercial product development. Product design and manufacturing organizations are moving from the traditional multiple and serial test cycle approach to simulation, which solves problems and validates performances using CAE and CAD tools.

For an efficient process, it is essential that design variants can be done within a short time frame. This generally leads to a challenge when the system under study exhibits nonlinear behavior. This session introduces a new methodology based on neural networks (NNs) and genetic algorithms (GAs), which “put data to work” and provide the best possible solution for a given design based on the available data. The goal of this methodology is to provide designers with a tool that can be used to select the optimum design for a given product. This is possible thanks to the optimization of the NN itself through GA implementation based on the available training data. Genetic algorithms have been used for neural networks in two main ways: to optimize the network architecture and to train the weights of a fixed architecture.

The performance of a NN is critically dependent on, among other variables, the choice of the processing elements (neurons), the architecture, and the learning algorithm. In particular, the connection density (among neurons) determines its ability to store information and learn from it. On one hand, a reduced number of connections may disable the network to approximate the function. On the other hand, dense connections may cause overfitting. NNs are usually seen as a method to implement complex nonlinear functions using simple elementary units connected with adaptive weights. We focus on optimizing the structure of connectivity for these networks using GAs to reduce learning time and avoid CAD/CAE loops. Indeed, this implementation provides neural network topologies that, in general, perform better than random or fully connected topologies when they learn and classify new data.

Genetic operators, such as mutation and cross-over, introduce variety into the initial randomly connected population, modifying the network’s architecture and testing candidate solutions. Once the most effective NN is trained, it is possible to adjust the design parameters, with the same accuracy as FEA or testing data, but sharply reducing the simulation time: The approximate hour and an half needed to analyze critical points by FEA is reduced to few seconds using neural networks. A MATLAB graphical user interface (GUI) works as a quick design guide, where the training data for the NN is obtained from a set of automatically generated FEA analyses. To assess the effectiveness of this methodology, several practical applications are shown. As an example, the optimal preload for bolted joints is returned in a few seconds starting from bolt’s geometry, friction coefficient, and applied torque.

Recorded: 22 Jun 2010

Related Products

  • Deep Learning Toolbox

3 Ways to Speed Up Model Predictive Controllers

Read white paper

A Practical Guide to Deep Learning: From Data to Deployment

Read ebook

Bridging Wireless Communications Design and Testing with MATLAB

Read white paper

Deep Learning and Traditional Machine Learning: Choosing the Right Approach

Read ebook

Hardware-in-the-Loop Testing for Power Electronics Control Design

Read white paper

Predictive Maintenance with MATLAB

Read ebook

Electric Vehicle Modeling and Simulation - Architecture to Deployment : Webinar Series

Register for Free

How much do you know about power conversion control?

Start quiz

Feedback

Featured Product

Deep Learning Toolbox

  • Request Trial
  • Get Pricing

Up Next:

3:48
Iris Flower Clustering with Neural Net Clustering App

Related Videos:

3:36
Wine Classification with Neural Net Pattern Recognition App
5:28
Maglev Modeling with Neural Time Series App
32:47
Challenges of Automotive Product Development: Lean...
21:50
Customizing Modeling Guideline Checks Within a Continuous...

View more related videos

MathWorks - Domain Selector

Select a Web Site

Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .

  • Switzerland (English)
  • Switzerland (Deutsch)
  • Switzerland (Français)
  • 中国 (简体中文)
  • 中国 (English)

You can also select a web site from the following list:

How to Get Best Site Performance

Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.

Americas

  • América Latina (Español)
  • Canada (English)
  • United States (English)

Europe

  • Belgium (English)
  • Denmark (English)
  • Deutschland (Deutsch)
  • España (Español)
  • Finland (English)
  • France (Français)
  • Ireland (English)
  • Italia (Italiano)
  • Luxembourg (English)
  • Netherlands (English)
  • Norway (English)
  • Österreich (Deutsch)
  • Portugal (English)
  • Sweden (English)
  • Switzerland
    • Deutsch
    • English
    • Français
  • United Kingdom (English)

Asia Pacific

  • Australia (English)
  • India (English)
  • New Zealand (English)
  • 中国
    • 简体中文Chinese
    • English
  • 日本Japanese (日本語)
  • 한국Korean (한국어)

Contact your local office

  • 営業へのお問い合わせ
  • 評価版

MathWorks

Accelerating the pace of engineering and science

MathWorksはエンジニアや研究者向け数値解析ソフトウェアのリーディングカンパニーです。

ディスカバー…

製品を見る

  • MATLAB
  • Simulink
  • 学生向けソフトウェア
  • ハードウェア サポート
  • File Exchange

製品評価版の入手または製品の購入

  • ダウンロード
  • 評価版ソフトウェア
  • 営業へのお問い合わせ
  • 価格とライセンス
  • MathWorksストア

使い方を学ぶ

  • ドキュメンテーション
  • チュートリアル
  • 例
  • ビデオ・Webセミナー
  • トレーニング

サポートを受ける

  • インストールのヘルプ
  • MATLAB Answers
  • 技術コンサルティング
  • ライセンスセンター
  • サポートへのお問い合わせ

MathWorks について

  • 採用情報
  • ニュースルーム
  • 社会貢献
  • ユーザー事例
  • MathWorks について
  • Select a Web Site United States
  • トラストセンター
  • 商標
  • プライバシー ポリシー
  • 違法コピー防止
  • アプリケーション ステータス

© 1994-2022 The MathWorks, Inc.

  • Facebook
  • Twitter
  • Instagram
  • YouTube
  • LinkedIn
  • RSS

MATLAB を語ろう