evaluate
Evaluate image classifier on collection of image sets
Syntax
Description
returns a normalized confusion matrix, confMat
= evaluate(categoryClassifier
,imds
)confMat
.
[
additionally returns the corresponding label indexes and score.confMat
,knownLabelIdx
,predictedLabelIdx
,score
] =
evaluate(categoryClassifier
,imds
)
Examples
Train, Evaluate, and Apply Image Category Classifier
Load two image categories.
setDir = fullfile(toolboxdir('vision'),'visiondata','imageSets'); imds = imageDatastore(setDir,'IncludeSubfolders',true,'LabelSource',... 'foldernames');
Split the data set into a training and test data. Pick 30% of images from each set for the training data and the remainder 70% for the test data.
[trainingSet,testSet] = splitEachLabel(imds,0.3,'randomize');
Create bag of visual words.
bag = bagOfFeatures(trainingSet);
Creating Bag-Of-Features. ------------------------- * Image category 1: books * Image category 2: cups * Selecting feature point locations using the Grid method. * Extracting SURF features from the selected feature point locations. ** The GridStep is [8 8] and the BlockWidth is [32 64 96 128]. * Extracting features from 4 images...done. Extracted 76800 features. * Keeping 80 percent of the strongest features from each category. * Creating a 500 word visual vocabulary. * Number of levels: 1 * Branching factor: 500 * Number of clustering steps: 1 * [Step 1/1] Clustering vocabulary level 1. * Number of features : 61440 * Number of clusters : 500 * Initializing cluster centers...100.00%. * Clustering...completed 55/100 iterations (~0.61 seconds/iteration)...converged in 55 iterations. * Finished creating Bag-Of-Features
Train a classifier with the training sets.
categoryClassifier = trainImageCategoryClassifier(trainingSet,bag);
Training an image category classifier for 2 categories. -------------------------------------------------------- * Category 1: books * Category 2: cups * Encoding features for 4 images...done. * Finished training the category classifier. Use evaluate to test the classifier on a test set.
Evaluate the classifier using test images. Display the confusion matrix.
confMatrix = evaluate(categoryClassifier,testSet)
Evaluating image category classifier for 2 categories. ------------------------------------------------------- * Category 1: books * Category 2: cups * Evaluating 8 images...done. * Finished evaluating all the test sets. * The confusion matrix for this test set is: PREDICTED KNOWN | books cups -------------------------- books | 0.75 0.25 cups | 0.25 0.75 * Average Accuracy is 0.75.
confMatrix = 2×2
0.7500 0.2500
0.2500 0.7500
Find the average accuracy of the classification.
mean(diag(confMatrix))
ans = 0.7500
Apply the newly trained classifier to categorize new images.
img = imread(fullfile(setDir,'cups','bigMug.jpg')); [labelIdx, score] = predict(categoryClassifier,img);
Encoding images using Bag-Of-Features. -------------------------------------- * Encoding an image...done.
Display the classification label.
categoryClassifier.Labels(labelIdx)
ans = 1x1 cell array
{'cups'}
Input Arguments
imds
— Data store object of images
ImageDatastore
object
Images, specified in an ImageDatastore
object.
categoryClassifier
— Image category classifier
imageCategoryClassifier
object
Image category classifier, specified as an imageCategoryClassifier
object.
Output Arguments
confMat
— Confusion matrix
matrix
Confusion matrix, returned as a matrix. The row indices correspond to known labels and the columns correspond to the predicted labels.
knownLabelIdx
— Label index for image set
M-by-1 vector | scalar
Label index for image set, returned as an M-by-1 vector for
M images. The knownLabelIdx
output value
corresponds to the index of an image set used to train the bag of features.
predictedLabelIdx
— Predicted label index
M-by-1 vector
Predicted label index, returned as an M-by-1 vector for
M images. The predictedLabelIdx
output value
corresponds to the index of an image set used to train the bag of features. The
predicted index corresponds to the class with the largest value in the
score
output.
score
— Prediction score
M-by-N matrix
Prediction score, specified as an M-by-N
matrix. N represents the number of classes. M
represents the number of images in the imageSet
input object, imgSet
. The score provides a
negated average binary loss per class. Each class is a support vector machine (SVM)
multiclass classifier that uses the error-correcting output codes (ECOC)
approach.
Version History
Introduced in R2014b
See Also
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)