sinint
Sine integral function
Syntax
Description
Examples
Sine Integral Function for Numeric and Symbolic Arguments
Depending on its arguments, sinint returns
floating-point or exact symbolic results.
Compute the sine integral function for these numbers. Because these numbers are not
symbolic objects, sinint returns floating-point results.
A = sinint([- pi, 0, pi/2, pi, 1])
A = -1.8519 0 1.3708 1.8519 0.9461
Compute the sine integral function for the numbers converted to symbolic objects. For
many symbolic (exact) numbers, sinint returns unresolved symbolic
calls.
symA = sinint(sym([- pi, 0, pi/2, pi, 1]))
symA = [ -sinint(pi), 0, sinint(pi/2), sinint(pi), sinint(1)]
Use vpa to approximate symbolic results with floating-point
numbers:
vpa(symA)
ans = [ -1.851937051982466170361053370158,... 0,... 1.3707621681544884800696782883816,... 1.851937051982466170361053370158,... 0.94608307036718301494135331382318]
Plot Sine Integral Function
Plot the sine integral function on the interval from -4*pi to 4*pi.
syms x fplot(sinint(x),[-4*pi 4*pi]) grid on

Handle Expressions Containing Sine Integral Function
Many functions, such as diff,
int, and taylor, can handle expressions
containing sinint.
Find the first and second derivatives of the sine integral function:
syms x diff(sinint(x), x) diff(sinint(x), x, x)
ans = sin(x)/x ans = cos(x)/x - sin(x)/x^2
Find the indefinite integral of the sine integral function:
int(sinint(x), x)
ans = cos(x) + x*sinint(x)
Find the Taylor series expansion of sinint(x):
taylor(sinint(x), x)
ans = x^5/600 - x^3/18 + x
Input Arguments
More About
References
[1] Gautschi, W. and W. F. Cahill. “Exponential Integral and Related Functions.” Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.
Version History
Introduced before R2006a