Main Content

このページの内容は最新ではありません。最新版の英語を参照するには、ここをクリックします。

sinhint

双曲線正弦積分関数

説明

sinhint(X) は、X双曲線正弦積分関数を返します。

数値引数およびシンボリック引数に対する双曲線正弦積分関数

引数に応じて、sinhint は浮動小数点解またはシンボリック厳密解の結果を返します。

次の数値について双曲線正弦積分関数を計算します。これらの数値はシンボリック オブジェクトではないため、sinhint は浮動小数点の結果を返します。

A = sinhint([-pi, -1, 0, pi/2, 2*pi])
A =
   -5.4696   -1.0573         0    1.8027   53.7368

シンボリック オブジェクトに変換された数値に対する双曲線正弦積分関数を計算します。ほとんどのシンボリックな (厳密な) 数値に対して、sinhint は未解決のシンボリックな呼び出しを返します。

symA = sinhint(sym([-pi, -1, 0, pi/2, 2*pi]))
symA =
[ -sinhint(pi), -sinhint(1), 0, sinhint(pi/2), sinhint(2*pi)]

vpa を使用し、これらの解を浮動小数点数で近似します。

vpa(symA)
ans =
[ -5.4696403451153421506369580091277,...
-1.0572508753757285145718423548959,...
0,...
1.802743198288293882089794577617,...
53.736750620859153990408011863262]

双曲線正弦積分関数のプロット

双曲線正弦積分関数を -2*pi から 2*pi までの範囲でプロットします。

syms x
fplot(sinhint(x),[-2*pi 2*pi])
grid on

双曲線正弦積分関数を含む式の処理

diffinttaylor などの多くの関数は sinhint を含む式を処理することができます。

双曲線正弦積分関数の 1 次および 2 次導関数を求めます。

syms x
diff(sinhint(x), x)
diff(sinhint(x), x, x)
ans =
sinh(x)/x
 
ans =
cosh(x)/x - sinh(x)/x^2

双曲線正弦積分関数の不定積分を求めます。

int(sinhint(x), x)
ans =
x*sinhint(x) - cosh(x)

sinhint(x) のテイラー級数展開を計算します。

taylor(sinhint(x), x)
ans =
x^5/600 + x^3/18 + x

入力引数

すべて折りたたむ

入力値。シンボリック数、変数、式または関数、あるいはシンボリック数、変数、式または関数のベクトルまたは行列として指定します。

詳細

すべて折りたたむ

双曲線正弦積分関数

双曲線正弦積分関数は、次のように定義されます。

Shi(x)=0xsinh(t)tdt

参照

[1] Gautschi, W. and W. F. Cahill. “Exponential Integral and Related Functions.” Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

バージョン履歴

R2014a で導入