Main Content

sin

シンボリック正弦関数

構文

説明

sin(X) は、X正弦関数を返します。

数値引数およびシンボリック引数に対する正弦関数

引数に応じて、sin は浮動小数点解またはシンボリック厳密解の結果を返します。

次の数値について正弦関数を計算します。これらの数値はシンボリック オブジェクトではないため、sin は浮動小数点の結果を返します。

A = sin([-2, -pi, pi/6, 5*pi/7, 11])
A =
   -0.9093   -0.0000    0.5000    0.7818   -1.0000

シンボリック オブジェクトに変換された数値に対する正弦関数を計算します。ほとんどのシンボリックな (厳密な) 数値に対して、sin は未解決のシンボリックな呼び出しを返します。

symA = sin(sym([-2, -pi, pi/6, 5*pi/7, 11]))
symA =
[ -sin(2), 0, 1/2, sin((2*pi)/7), sin(11)]

vpa を使用し、これらの解を浮動小数点数で近似します。

vpa(symA)
ans =
[ -0.90929742682568169539601986591174,...
0,...
0.5,...
0.78183148246802980870844452667406,...
-0.99999020655070345705156489902552]

正弦関数のプロット

正弦関数を -4π から 4π までの範囲でプロットします。

syms x
fplot(sin(x),[-4*pi 4*pi])
grid on

Figure contains an axes object. The axes object contains an object of type functionline.

正弦関数を含む式の処理

diffinttaylorrewrite などの多くの関数は sin を含む式を処理することができます。

正弦関数の 1 次および 2 次導関数を求めます。

syms x
diff(sin(x), x)
diff(sin(x), x, x)
ans =
cos(x)
 
ans =
-sin(x)

正弦関数の不定積分を求めます。

int(sin(x), x)
ans =
-cos(x)

sin(x) のテイラー級数展開を計算します。

taylor(sin(x), x)
ans =
x^5/120 - x^3/6 + x

正弦関数を指数関数に書き換えます。

rewrite(sin(x), 'exp')
ans =
(exp(-x*1i)*1i)/2 - (exp(x*1i)*1i)/2

sin 関数による単位の評価

sin は、自動的に radiandegreearcminarcsec、および revolution の単位を数値的に評価します。

x° および 2 ラジアンの正弦を求めることで、この挙動を示します。

u = symunit;
syms x
f = [x*u.degree 2*u.radian];
sinf = sin(f)
sinf =
[ sin((pi*x)/180), sin(2)]

subs を使用して x への代入を行い、double または vpa を使用して、sinf を計算することができます。

入力引数

すべて折りたたむ

入力。シンボリック数、シンボリック スカラー変数、シンボリック行列変数、シンボリック式、シンボリック関数、シンボリック行列関数として指定するか、シンボリック数、シンボリック スカラー変数、シンボリック式、シンボリック関数のベクトルまたは行列として指定します。

詳細

すべて折りたたむ

正弦関数

角度 α の正弦は直角三角形により定義されます。

sin(α)=opposite sidehypotenuse=ah.

Right triangle with vertices A, B, and C. The vertex A has an angle α, and the vertex C has a right angle. The hypotenuse, or side AB, is labeled as h. The opposite side of α, or side BC, is labeled as a. The adjacent side of α, or side AC, is labeled as b. The sine of α is defined as the opposite side a divided by the hypotenuse h.

複素数引数 α の正弦は以下になります。

sin(α)=eiαeiα2i.

バージョン履歴

R2006a より前に導入

すべて展開する

参考

| | | | | | | | | | |