このページの翻訳は最新ではありません。ここをクリックして、英語の最新版を参照してください。
回帰学習器アプリ
回帰モデルの対話的な学習、検定、調整
回帰モデルの学習と検定を行うための各種のアルゴリズムから選択します。複数のモデルに学習をさせた後で、検証誤差を並べて比較し、最適なモデルを選択します。使用するアルゴリズムの決定方法については、回帰学習器アプリにより回帰モデルに学習をさせるを参照してください。
このフローチャートは、回帰学習器アプリで回帰モデルに学習させるための一般的なワークフローを示しています。
回帰学習器で学習させたいずれかのモデルを使用して実験を実行する場合は、モデルを実験マネージャー アプリにエクスポートできます。詳細については、回帰学習器から実験マネージャーへのモデルのインポートを参照してください。
トピック
一般的なワークフロー
- 回帰学習器アプリにより回帰モデルに学習をさせる
自動、手動および並列学習など、回帰モデルの学習、比較および改善を行うためのワークフローです。 - 回帰用のデータの選択または保存したアプリ セッションを開く
ワークスペースまたはファイルから回帰学習器にデータをインポートし、サンプル データ セットを探し、交差検証またはホールドアウト検証オプションを選択して、データをテスト用に確保する。あるいは、前に保存したアプリ セッションを開く。 - 回帰モデルのオプションの選択
回帰学習器で、選択したモデルに自動的に学習させるか、線形回帰モデル、回帰木、サポート ベクター マシン、ガウス過程回帰モデル、カーネル近似モデル、回帰木のアンサンブル、および回帰ニューラル ネットワークのオプションを比較して調整する。 - 回帰学習器におけるモデルの性能の可視化と評価
モデルのメトリクスを比較し、結果を可視化する。 - 新しいデータによる予測のための回帰モデルのエクスポート
回帰学習器で学習を行った後で、モデルのワークスペースへのエクスポート、MATLAB® コードの生成、予測用の C コードの生成、または展開用のモデルの MATLAB Production Server™ へのエクスポートを実行する。 - 回帰学習器アプリを使用して回帰木に学習をさせる
回帰木を作成および比較し、新しいデータについて予測を行うため学習済みモデルをエクスポートします。 - 回帰学習器アプリを使用した回帰ニューラル ネットワークの学習
回帰ニューラル ネットワークを作成および比較し、新しいデータについて予測を行うため学習済みモデルをエクスポートする。 - 回帰学習器アプリを使用したカーネル近似モデルの学習
カーネル近似モデルを作成および比較し、新しいデータについて予測を行うため学習済みモデルをエクスポートする。
カスタマイズされたワークフロー
- 回帰学習器アプリの使用による特徴選択と特徴変換
回帰学習器で、プロットまたは特徴ランク付けアルゴリズムを使用して有用な予測子を識別し、含める特徴量を選択し、PCA を使用して特徴量を変換する。 - 回帰学習器アプリのハイパーパラメーターの最適化
ハイパーパラメーターの最適化を使用して回帰モデルのハイパーパラメーターを自動的に調整します。 - 回帰学習器アプリのハイパーパラメーターの最適化を使用した回帰モデルの学習
最適化されたハイパーパラメーターでアンサンブル回帰モデルに学習をさせます。 - 回帰学習器アプリにおけるテスト セットを使用したモデルの性能チェック
テスト セットを回帰学習器にインポートし、最適な学習済みモデルのテスト セット メトリクスをチェックする。 - 回帰学習器アプリで学習させた回帰モデルの解釈
部分依存プロットを使用して学習済みの回帰モデルで特徴量がどのように使用されるかを判断する。 - 回帰学習器アプリのプロットのエクスポート
学習の前後で作成したプロットをエクスポートおよびカスタマイズします。 - 回帰学習器で学習させたモデルの MATLAB Production Server への展開
回帰学習器でモデルに学習させ、MATLAB Production Server への展開用にエクスポートする。
実験マネージャーのワークフロー
- 回帰学習器から実験マネージャーへのモデルのインポート
実験を複数実行するために回帰モデルを実験マネージャーにエクスポートする。 - 実験マネージャーを使用した回帰モデルの調整
実験マネージャーでさまざまな学習データ セット、ハイパーパラメーター、可視化を使用してガウス過程回帰 (GPR) モデルを調整する。
関連情報
- MATLAB の機械学習
- 実験マネージャー アプリ (Deep Learning Toolbox)