ドキュメンテーション

最新のリリースでは、このページがまだ翻訳されていません。 このページの最新版は英語でご覧になれます。

kfoldPredict

交差検証済み ECOC モデルの観測値の分類

説明

label = kfoldPredict(CVMdl) は、交差検証 ECOC モデル (ClassificationPartitionedECOC) CVMdl により予測されたクラス ラベルを返します。kfoldPredict は、すべての分割について、学習時にホールド アウトする観測値のクラス ラベルを予測します。CVMdl.X には、両方の観測値のセットが含まれます。

符号を反転した最大の平均バイナリ損失 (つまり、最小の平均バイナリ損失と等しい) の発生するクラスに観測を割り当てることで、観測の分類が予測されます。

label = kfoldPredict(CVMdl,Name,Value) は、1 つ以上の名前と値のペアの引数で指定された追加オプションを使用して、予測クラス ラベルを返します。たとえば、事後確率推定法、復号化スキームまたは詳細レベルを指定します。

[label,NegLoss,PBScore] = kfoldPredict(___) は、前の構文における任意の入力引数を組み合わせて使用し、検証分割観測値に対するクラスごとの平均バイナリ損失の符号反転値 (NegLoss) と、各バイナリ学習器によって分類された検証分割観測値に対する正のクラス スコア (PBScore) をさらに返します。

符号化行列が分割ごとに異なる場合 (つまり、符号化方式が sparserandom または denserandom である場合)、PBScore は空 ([]) になります。

[label,NegLoss,PBScore,Posterior] = kfoldPredict(___) は、検証分割観測値の事後クラス確率の推定値 (Posterior) をさらに返します。

事後クラス確率を取得するには、fitcecoc を使用して交差検証済み ECOC モデルに学習をさせるときに 'FitPosterior',1 を設定しなければなりません。それ以外の場合、kfoldPredict はエラーがスローされます。

すべて折りたたむ

フィッシャーのアヤメのデータセットを読み込みます。予測子データ X、応答データ Y、および Y 内のクラスの順序を指定します。

load fisheriris
X = meas;
Y = categorical(species);
classOrder = unique(Y);
rng(1); % For reproducibility

サポート ベクター マシン (SVM) バイナリ分類器を使用して、ECOC モデルの学習と交差検証を行います。SVM テンプレートを使用して予測子データを標準化し、クラスの順序を指定します。

t = templateSVM('Standardize',1);
CVMdl = fitcecoc(X,Y,'CrossVal','on','Learners',t,'ClassNames',classOrder);

CVMdlClassificationPartitionedECOC モデルです。既定では、10 分割交差検証が実行されます。名前と値のペアの引数 'KFold' を使用して異なる分割数を指定できます。

検証分割のラベルを予測します。真のラベルと予測されたラベルのランダムなサブセットを印刷します。

labels = kfoldPredict(CVMdl);
idx = randsample(numel(labels),10);
table(Y(idx),labels(idx),...
    'VariableNames',{'TrueLabels','PredictedLabels'})
ans=10×2 table
    TrueLabels    PredictedLabels
    __________    _______________

    setosa          setosa       
    versicolor      versicolor   
    setosa          setosa       
    virginica       virginica    
    versicolor      versicolor   
    setosa          setosa       
    virginica       virginica    
    virginica       virginica    
    setosa          setosa       
    setosa          setosa       

CVMdl は、インデックス idx を使用して検証分割観測値に正確なラベルを付けます。

フィッシャーのアヤメのデータセットを読み込みます。予測子データ X、応答データ Y、および Y 内のクラスの順序を指定します。

load fisheriris
X = meas;
Y = categorical(species);
classOrder = unique(Y); % Class order
K = numel(classOrder);  % Number of classes
rng(1); % For reproducibility

SVM バイナリ分類器を使用して、ECOC モデルの学習と交差検証を行います。SVM テンプレートを使用して予測子データを標準化し、クラスの順序を指定します。

t = templateSVM('Standardize',1);
CVMdl = fitcecoc(X,Y,'CrossVal','on','Learners',t,'ClassNames',classOrder);

CVMdlClassificationPartitionedECOC モデルです。既定では、10 分割交差検証が実行されます。名前と値のペアの引数 'KFold' を使用して異なる分割数を指定できます。

SVM スコアは観測から判定境界までの符号付き距離です。したがって、定義域は (-,) です。以下のようなカスタム バイナリ損失関数を作成します。

  • 各学習器の符号化設計行列 (M) と陽性クラスの分類スコア (s) を各観測値のバイナリ損失にマッピングする

  • 線形損失を使用する

  • 中央値を使用して、バイナリ学習器損失を集計します。

バイナリ損失関数用に独立した関数を作成し、MATLAB® パスに保存できます。あるいは、無名バイナリ損失関数を指定できます。この場合、無名バイナリ損失関数に対する関数ハンドル (customBL) を作成します。

customBL = @(M,s)nanmedian(1 - bsxfun(@times,M,s),2)/2;

交差検証ラベルを予測し、クラスごとのバイナリ損失の中央値を推定します。10 個の検証分割観測値のランダムなセットについて、クラスごとの負のバイナリ損失の中央値を出力します。

[label,NegLoss] = kfoldPredict(CVMdl,'BinaryLoss',customBL);

idx = randsample(numel(label),10);
classOrder
classOrder = 3x1 categorical array
     setosa 
     versicolor 
     virginica 

table(Y(idx),label(idx),NegLoss(idx,:),'VariableNames',...
    {'TrueLabel','PredictedLabel','NegLoss'})
ans=10×3 table
    TrueLabel     PredictedLabel                 NegLoss             
    __________    ______________    _________________________________

    setosa          versicolor      0.37141       2.1292      -4.0006
    versicolor      versicolor      -1.2167       0.3669     -0.65017
    setosa          versicolor      0.23927         2.08      -3.8193
    virginica       virginica       -1.9154     -0.19947       0.6149
    versicolor      versicolor      -1.3746      0.45535     -0.58076
    setosa          versicolor      0.20061       2.2774      -3.9781
    virginica       versicolor      -1.4928     0.090689    -0.097935
    virginica       virginica       -1.7669     -0.13464       0.4015
    setosa          versicolor      0.19999       1.9113      -3.6113
    setosa          versicolor      0.16108       1.9684      -3.6295

列の順序は classOrder の要素に対応します。符号が反転した最大損失に基づき、ラベルが予測されます。この結果は、線形損失の中央値が他の損失ほどは効果的に機能しないことを示しています。

フィッシャーのアヤメのデータセットを読み込みます。花弁の寸法を予測子データ X として使用します。応答データ Y と、Y 内のクラスの順序を指定します。

load fisheriris
X = meas(:,3:4);
Y = categorical(species);
classOrder = unique(Y);
rng(1); % For reproducibility

SVM テンプレートを作成します。予測子を標準化し、ガウス カーネルを指定します。

t = templateSVM('Standardize',1,'KernelFunction','gaussian');

t は SVM テンプレートです。ほとんどのプロパティは空です。ECOC 分類器に学習をさせると、該当するプロパティが既定値に設定されます。

SVM テンプレートを使用して、ECOC 分類器の学習と交差検証を行います。'FitPosterior' 名前と値のペアの引数を使用してクラスの事後確率 (kfoldPredict により返される) へ分類スコアを変換します。クラスの順序を指定します。

CVMdl = fitcecoc(X,Y,'Learners',t,'CrossVal','on','FitPosterior',true,...
    'ClassNames',classOrder);

CVMdlClassificationPartitionedECOC モデルです。既定では、10 分割交差検証が使用されます。

検証分割のクラス事後確率を予測します。カルバック・ライブラーのアルゴリズムに対して、10 個の無作為な初期値を使用します。

[label,~,~,Posterior] = kfoldPredict(CVMdl,'NumKLInitializations',10);

バイナリ損失の平均が最小となるクラスに観測が割り当てられます。すべてのバイナリ学習器は事後確率を計算するので、バイナリ損失関数は quadratic です。

無作為な結果の集合を表示します。

idx = randsample(size(X,1),10);
CVMdl.ClassNames
ans = 3x1 categorical array
     setosa 
     versicolor 
     virginica 

table(Y(idx),label(idx),Posterior(idx,:),...
    'VariableNames',{'TrueLabel','PredLabel','Posterior'})
ans=10×3 table
    TrueLabel     PredLabel                   Posterior               
    __________    __________    ______________________________________

    versicolor    versicolor     0.0086394       0.98243     0.0089291
    versicolor    virginica     2.2197e-14       0.12447       0.87553
    setosa        setosa             0.999    0.00022837    0.00076884
    versicolor    versicolor    2.2194e-14       0.98916      0.010839
    virginica     virginica       0.012318      0.012925       0.97476
    virginica     virginica      0.0015571     0.0015638       0.99688
    virginica     virginica      0.0042894     0.0043555       0.99136
    setosa        setosa             0.999    0.00028329    0.00071382
    virginica     virginica      0.0094641     0.0098145       0.98072
    setosa        setosa             0.999    0.00013562    0.00086192

Posterior の列は CVMdl.ClassNames のクラスの順序に対応します。

マルチクラス ECOC モデルに学習をさせ、並列計算を使用して事後確率を推定します。

arrhythmia データセットを読み込みます。応答データ Y を確認します。

load arrhythmia
Y = categorical(Y);
tabulate(Y)
  Value    Count   Percent
      1      245     54.20%
      2       44      9.73%
      3       15      3.32%
      4       15      3.32%
      5       13      2.88%
      6       25      5.53%
      7        3      0.66%
      8        2      0.44%
      9        9      1.99%
     10       50     11.06%
     14        4      0.88%
     15        5      1.11%
     16       22      4.87%
n = numel(Y);
K = numel(unique(Y));

いくつかのクラスはデータに表れません。また、他の多くのクラスでは相対的頻度が低くなります。

GentleBoost 法と 50 個の分類木弱学習器を使用するアンサンブル学習テンプレートを指定します。

t = templateEnsemble('GentleBoost',50,'Tree');

t はテンプレート オブジェクトです。ほとんどのオプションは空です ([])。学習の間、すべての空のオプションに既定値が使用されます。

応答変数には多数のクラスが含まれているので、スパースなランダム符号化設計を指定します。

rng(1); % For reproducibility
Coding = designecoc(K,'sparserandom');

並列計算を使用して、ECOC モデルの学習と交差検証を行います。(kfoldPredict によって返される) 事後確率をあてはめます。

pool = parpool;                      % Invokes workers
Starting parallel pool (parpool) using the 'local' profile ...
connected to 6 workers.
options = statset('UseParallel',1);
CVMdl = fitcecoc(X,Y,'Learner',t,'Options',options,'Coding',Coding,...
    'FitPosterior',1,'CrossVal','on');
Warning: One or more folds do not contain points from all the groups.

CVMdlClassificationPartitionedECOC モデルです。既定では、10 分割交差検証が実行されます。名前と値のペアの引数 'KFold' を使用して異なる分割数を指定できます。

このプールでは 6 つのワーカーが起動しましたが、ワーカー数はシステムによって異なる可能性があります。相対頻度が低いクラスがあるので、1 つ以上の分割で一部のクラスの観測値が含まれない可能性が高くなります。

事後確率を推定し、検証分割観測値の無作為なセットのデータに対して、不整脈でない (クラス 1) と分類される事後確率を表示します。

[~,~,~,posterior] = kfoldPredict(CVMdl,'Options',options);
idx = randsample(n,10);
table(idx,Y(idx),posterior(idx,1),...
    'VariableNames',{'OOFSampleIndex','TrueLabel','PosteriorNoArrhythmia'})
ans=10×3 table
    OOFSampleIndex    TrueLabel    PosteriorNoArrhythmia
    ______________    _________    _____________________

         171             1                0.33654       
         221             1                0.85135       
          72             16                0.9174       
           3             10              0.025649       
         202             1                 0.8438       
         243             1                 0.9435       
          18             1                0.81198       
          49             6               0.090154       
         234             1                0.61625       
         315             1                0.97187       

入力引数

すべて折りたたむ

交差検証 ECOC モデル。ClassificationPartitionedECOC モデルとして指定します。ClassificationPartitionedECOC モデルは 2 つの方法で作成できます。

  • 学習済みの ECOC モデル (ClassificationECOC) を crossval に渡します。

  • fitcecoc を使用して ECOC モデルに学習をさせ、交差検証の名前と値のペアの引数 'CrossVal''CVPartition''Holdout''KFold''Leaveout' のいずれかを指定します。

名前と値のペアの引数

オプションの Name,Value 引数のコンマ区切りペアを指定します。Name は引数名で、Value は対応する値です。Name は引用符で囲まなければなりません。Name1,Value1,...,NameN,ValueN のように、複数の名前と値のペアの引数を、任意の順番で指定できます。

例: kfoldPredict(CVMdl,'PosteriorMethod','qp') は、二次計画法を使用して最小二乗問題を解くことによりマルチクラス事後確率を推定するよう指定します。

バイナリ学習器の損失関数。'BinaryLoss' と組み込みの損失関数名または関数ハンドルから構成されるコンマ区切りのペアとして指定します。

  • 次の表で、組み込み関数について説明します。ここで、yj は特定のバイナリ学習器のクラス ラベル (集合 {–1,1,0} 内)、sj は観測値 j のスコア、g(yj,sj) はバイナリ損失の式です。

    説明スコア領域g(yj,sj)
    'binodeviance'二項分布からの逸脱度(–∞,∞)log[1 + exp(–2yjsj)]/[2log(2)]
    'exponential'指数(–∞,∞)exp(–yjsj)/2
    'hamming'ハミング[0,1] または (–∞,∞)[1 – sign(yjsj)]/2
    'hinge'ヒンジ(–∞,∞)max(0,1 – yjsj)/2
    'linear'線形(–∞,∞)(1 – yjsj)/2
    'logit'ロジスティック(–∞,∞)log[1 + exp(–yjsj)]/[2log(2)]
    'quadratic'2 次[0,1][1 – yj(2sj – 1)]2/2

    バイナリ損失は、yj = 0 の場合に損失が 0.5 になるように正規化されます。また、各クラスについて平均のバイナリ損失が計算されます。

  • カスタム バイナリ損失関数の場合は関数ハンドルを指定します。たとえば、customFunction の場合は 'BinaryLoss',@customFunction を指定します。

    customFunction の形式は次のとおりです。

    bLoss = customFunction(M,s)
    ここで、

    • MMdl.CodingMatrix に格納された K 行 L 列のコーディング行列です。

    • s は、1 行 L 列の分類スコアの行ベクトルです。

    • bLoss は分類損失です。このスカラーは、特定のクラスのすべての学習器についてバイナリ損失を集計します。たとえば、平均バイナリ損失を使用して、各クラスの学習器の損失を集計できます。

    • K は、クラスの数です。

    • L は、バイナリ学習器の数です。

    カスタムなバイナリ損失関数を渡す例については、カスタム バイナリ損失関数の使用による ECOC モデルの検定標本ラベルの予測を参照してください。

BinaryLoss の既定値は、バイナリ学習器が返すスコアの範囲によって異なります。次の表で、特定の仮定に基づく BinaryLoss の既定値について説明します。

仮定既定値
すべてのバイナリ学習器が SVM であるか、SVM 学習器の線形またはカーネル分類モデルである。'hinge'
すべてのバイナリ学習器が、AdaboostM1 または GentleBoost によって学習をさせたアンサンブルである。'exponential'
すべてのバイナリ学習器が、LogitBoost によって学習をさせたアンサンブルである。'binodeviance'
すべてのバイナリ学習器が、ロジスティック回帰学習器の線形またはカーネル分類モデルである。または、fitcecoc'FitPosterior',true を設定して、クラスの事後確率を予測するよう指定した。'quadratic'

既定値を確認するには、コマンド ラインでドット表記を使用して学習済みモデルの BinaryLoss プロパティを表示します。

例: 'BinaryLoss','binodeviance'

データ型: char | string | function_handle

バイナリ損失を集計する復号化方式。'Decoding''lossweighted' または 'lossbased' から構成されるコンマ区切りのペアとして指定します。詳細は、バイナリ損失を参照してください。

例: 'Decoding','lossbased'

カルバック・ライブラー ダイバージェンスの最小化により事後確率をあてはめるためのランダムな初期値の個数。'NumKLInitializations' と非負の整数スカラーから構成されるコンマ区切りのペアとして指定します。

4 番目の出力引数 (Posterior) を要求せず、'PosteriorMethod','kl' (既定の設定) を設定する場合、NumKLInitializations の値は無視されます。

詳細は、カルバック・ライブラー ダイバージェンスを使用する事後推定を参照してください。

例: 'NumKLInitializations',5

データ型: single | double

推定オプション。statset により返される 'Options' と構造体配列から構成されるコンマ区切りのペアとして指定します。

並列計算を起動するには、以下を行います。

  • Parallel Computing Toolbox™ ライセンスが必要です。

  • 'Options',statset('UseParallel',true) を指定します。

事後確率推定法。'PosteriorMethod''kl' または 'qp' で構成されるコンマ区切りのペアとして指定します。

  • PosteriorMethod'kl' の場合、バイナリ学習器によって返される予測された事後確率と期待された事後確率間のカルバック・ライブラー ダイバージェンスを最小化することにより、マルチクラス事後確率が推定されます。詳細については、カルバック・ライブラー ダイバージェンスを使用する事後推定を参照してください。

  • PosteriorMethod'qp' の場合、二次計画法を使用して最小二乗問題を解決することでマルチクラス事後確率が推定されます。このオプションを使用するには Optimization Toolbox™ ライセンスが必要です。詳細については、二次計画法を使用する事後推定を参照してください。

  • 4 番目の出力引数 (Posterior) を要求しない場合、PosteriorMethod の値は無視されます。

例: 'PosteriorMethod','qp'

詳細レベル。'Verbose'0 または 1 から構成されるコンマ区切りのペアとして指定します。Verbose は、コマンド ウィンドウに表示される診断メッセージの量を制御します。

Verbose0 の場合、診断メッセージは表示されません。それ以外の場合は、診断メッセージが表示されます。

例: 'Verbose',1

データ型: single | double

出力引数

すべて折りたたむ

予測クラス ラベル。categorical 配列、文字配列、logical ベクトル、数値ベクトル、または文字ベクトルの cell 配列として返されます。

label のデータ型および行数は CVMdl.Y と同じです。

符号を反転した最大の平均バイナリ損失 (つまり、最小の平均バイナリ損失と等しい) の発生するクラスに観測を割り当てることで、観測の分類が予測されます。

符号を反転した平均バイナリ損失。数値行列として返されます。NegLoss は n 行 K 列の行列です。ここで n は観測 (size(CVMdl.X,1)) の数、K は一意のクラス (size(CVMdl.ClassNames,1)) の数です。

各バイナリ学習器の陽性クラスのスコア。数値行列として返します。PBScore は n 行 L 列の行列であり、n は観測値 (size(CVMdl.X,1)) の数、L はバイナリ学習器 (size(CVMdl.CodingMatrix,2)) の数です。

符号化行列が分割ごとに異なる場合 (つまり、符号化方式が sparserandom または denserandom である場合)、PBScore は空 ([]) になります。

事後クラス確率。数値行列として返します。Posterior は n 行 K 列の行列です。ここで n は観測 (size(CVMdl.X,1)) の数、K は一意のクラス (size(CVMdl.ClassNames,1)) の数です。

Posterior を要求するには、fitcecoc を使用して交差検証済み ECOC モデルに学習をさせるときに 'FitPosterior',1 を設定しなければなりません。それ以外の場合は、エラーがスローされます。

詳細

すべて折りたたむ

バイナリ損失

"バイナリ損失" は、バイナリ学習器がどの程度の精度で観測値をクラスに分類するかを判断する、クラスと分類スコアの関数です。

以下のように仮定します。

  • mkj は符号化設計行列 M の要素 (k,j)、つまりバイナリ学習器 j のクラス k に対応するコード。

  • sj は観測値に対するバイナリ学習器 j のスコア。

  • g はバイナリ損失関数。

  • k^ は観測値の予測クラス。

"損失に基づく復号化" [Escalera 他] では、バイナリ学習器全体のバイナリ損失の和が最小になるクラスにより、観測値の予測クラスが決まります。つまり、次のようになります。

k^=argminkj=1L|mkj|g(mkj,sj).

"損失に重みを付けた復号化" [Escalera 他] では、バイナリ学習器全体のバイナリ損失の平均が最小になるクラスにより、観測値の予測クラスが決まります。つまり、次のようになります。

k^=argminkj=1L|mkj|g(mkj,sj)j=1L|mkj|.

Allwein 他によると、すべてのクラスで損失値が同じ動的範囲に収まるので、損失に重みを付けた復号化では分類精度が向上します。

次の表は、サポートされる損失関数をまとめています。ここで、yj は特定のバイナリ学習器のクラス ラベル (集合 {–1,1,0} 内)、sj は観測値 j のスコアであり、g(yj,sj) です。

説明スコア領域g(yj,sj)
'binodeviance'二項分布からの逸脱度(–∞,∞)log[1 + exp(–2yjsj)]/[2log(2)]
'exponential'指数(–∞,∞)exp(–yjsj)/2
'hamming'ハミング[0,1] または (–∞,∞)[1 – sign(yjsj)]/2
'hinge'ヒンジ(–∞,∞)max(0,1 – yjsj)/2
'linear'線形(–∞,∞)(1 – yjsj)/2
'logit'ロジスティック(–∞,∞)log[1 + exp(–yjsj)]/[2log(2)]
'quadratic'2 次[0,1][1 – yj(2sj – 1)]2/2

バイナリ損失は、yj = 0 のときに損失が 0.5 になるように正規化され、バイナリ学習器の平均を使用して集計されます [Allwein 他]

ECOC 分類器の全体的な性能の尺度である全体の分類損失 (オブジェクト関数 loss および predict の名前と値のペアの引数 'LossFun' により指定) とバイナリ損失を混同しないでください。

アルゴリズム

すべて折りたたむ

カルバック・ライブラー ダイバージェンスを最小化するか、二次計画法を使用することにより、クラス事後確率を推定できます。以下の事後推定アルゴリズムに関する説明では、次のように仮定します。

  • mkj は符号化設計行列 M の要素 (k,j) です。

  • I はインジケーター関数です。

  • p^k は、ある観測値のクラス k (k = 1、...、K) に対するクラス事後確率の推定値です。

  • rj はバイナリ学習器 j の陽性クラス事後確率です。つまり、rj は、学習データが与えられる場合、バイナリ学習器 j が観測値を陽性クラスに分類する確率です。

カルバック・ライブラー ダイバージェンスを使用する事後推定

既定では、カルバック・ライブラー ダイバージェンスは最小化され、クラス事後確率が推定されます。予測された陽性クラス事後確率と観測された陽性クラス事後確率の間のカルバック・ライブラー ダイバージェンスは次のようになります。

Δ(r,r^)=j=1Lwj[rjlogrjr^j+(1rj)log1rj1r^j],

ここで、wj=Sjwi はバイナリ学習器 j の重みです。

  • Sj は、バイナリ学習器 j が学習する一連の観測値のインデックスです。

  • wi は、観測値 i の重みです。

ダイバージェンスは反復して最小化されます。最初のステップとして、クラス事後確率の初期値 p^k(0);k=1,...,K を選択します。

  • 'NumKLIterations' を指定しない場合、次の確定的な初期値の集合が両方試され、Δ を最小化する集合が選択されます。

    • p^k(0)=1/K;k=1,...,K.

    • p^k(0);k=1,...,K は、次の連立方程式の解です。

      M01p^(0)=r,

      ここで、M01 はすべての mkj = -1 を 0 に置き換えた M、r は L 個のバイナリ学習器によって返された陽性クラス事後確率のベクトルです [Dietterich 他]lsqnonneg を使いシステムを解きます。

  • 'NumKLIterations',c を指定した場合 (c は自然数)、集合 p^k(0);k=1,...,K は次のように選択され、Δ を最小化する集合が使用されます。

    • 前述した確定的な初期値の集合の両方が試されます。

    • rand を使用して長さ K のベクトル c を無作為に生成し、各ベクトルの合計が 1 になるように正規化します。

反復 t では、以下の手順が実行されます。

  1. r^j(t)=k=1Kp^k(t)I(mkj=+1)k=1Kp^k(t)I(mkj=+1mkj=1).

    を計算します。

  2. 次の式を使用して、次のクラスの事後確率を推定します。

    p^k(t+1)=p^k(t)j=1Lwj[rjI(mkj=+1)+(1rj)I(mkj=1)]j=1Lwj[r^j(t)I(mkj=+1)+(1r^j(t))I(mkj=1)].

  3. 合計が 1 になるように p^k(t+1);k=1,...,K を正規化します。

  4. 収束を確認します。

詳細については、[Hastie 他] および [Zadrozny] を参照してください。

二次計画法を使用する事後推定

二次計画法を使用する事後確率には、Optimization Toolbox ライセンスが必要です。この方法を使用して観測値の事後確率を推定するため、以下の手順が実行されます。

  1. バイナリ学習器 j = 1、...、L の陽性クラス事後確率 rj を推定します。

  2. rjp^k の関係を使用して [Wu 他]、次の値を最小化します。

    j=1L[rjk=1Kp^kI(mkj=1)+(1rj)k=1Kp^kI(mkj=+1)]2

    これは、次の制限を適用して p^k に関して行います。

    0p^k1kp^k=1.

    最小化には quadprog が使用されます。

参照

[1] Allwein, E., R. Schapire, and Y. Singer. “Reducing multiclass to binary: A unifying approach for margin classifiers.” Journal of Machine Learning Research. Vol. 1, 2000, pp. 113–141.

[2] Dietterich, T., and G. Bakiri. “Solving Multiclass Learning Problems Via Error-Correcting Output Codes.” Journal of Artificial Intelligence Research. Vol. 2, 1995, pp. 263–286.

[3] Escalera, S., O. Pujol, and P. Radeva. “On the decoding process in ternary error-correcting output codes.” IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. 32, Issue 7, 2010, pp. 120–134.

[4] Escalera, S., O. Pujol, and P. Radeva. “Separability of ternary codes for sparse designs of error-correcting output codes.” Pattern Recogn. Vol. 30, Issue 3, 2009, pp. 285–297.

[5] Hastie, T., and R. Tibshirani. “Classification by Pairwise Coupling.” Annals of Statistics. Vol. 26, Issue 2, 1998, pp. 451–471.

[6] Wu, T. F., C. J. Lin, and R. Weng. “Probability Estimates for Multi-Class Classification by Pairwise Coupling.” Journal of Machine Learning Research. Vol. 5, 2004, pp. 975–1005.

[7] Zadrozny, B. “Reducing Multiclass to Binary by Coupling Probability Estimates.” NIPS 2001: Proceedings of Advances in Neural Information Processing Systems 14, 2001, pp. 1041–1048.

拡張機能

R2014b で導入