このページの内容は最新ではありません。最新版の英語を参照するには、ここをクリックします。
ode23t
中程度にスティッフな常微分方程式 (ODE) と微分代数方程式 (DAE) の求解 — 台形則
構文
説明
[
は、t
,y
] = ode23t(odefun
,tspan
,y0
)tspan = [t0 tf]
のときに、初期条件 y0
を使用して、微分方程式系 を t0
から tf
まで積分します。解の配列 y
の各行は、列ベクトル t
に返される値に対応します。
すべての MATLAB® ODE ソルバーは、 の形式の方程式系、あるいは質量行列 を含む問題を解くことができます。すべてのソルバーは類似した構文を使用します。ode23s
ソルバーは、質量行列が定数である場合にのみ、これを含む問題を解くことができます。ode15s
および ode23t
は、特異質量行列をもつ方程式、つまり微分代数方程式 (DAE) を解くことができます。odeset
の Mass
オプションを使用して質量行列を指定します。
[
はさらに、(t,y) の関数 (イベント関数) がゼロになる点を求めます。出力の t
,y
,te
,ye
,ie
] = ode23t(odefun
,tspan
,y0
,options
)te
はイベント時点、ye
はイベント時点における解、ie
はトリガーされたイベントのインデックスです。
各関数に対して、ゼロで積分を終了するかどうかと、ゼロクロッシングの方向を考慮するかどうかを指定します。これを行うには、myEventFcn
や @myEventFcn
などの関数に 'Events'
プロパティを設定し、対応する関数 [value
,isterminal
,direction
] = myEventFcn
(t
,y
) を作成します。詳細については、ODE のイベント検出を参照してください。
は、区間 sol
= ode23t(___)[t0 tf]
の任意の点で解を計算する関数 deval
で使用できる構造体を返します。前述の構文にある任意の入力引数の組み合わせが使用できます。
例
入力引数
出力引数
アルゴリズム
関数 ode23t
は、"フリー" 内挿を利用して台形則を実行します。問題が中程度にスティッフであり、数値的減衰のない解が必要な場合には、ode15s
よりもこのソルバーが推奨されます。ode23t
は微分代数方程式 (DAE) を解くこともできます [1]、[2]。
参照
[1] Shampine, L. F., M. W. Reichelt, and J.A. Kierzenka, “Solving Index-1 DAEs in MATLAB and Simulink”, SIAM Review, Vol. 41, 1999, pp. 538–552.
[2] Shampine, L. F. and M. E. Hosea, “Analysis and Implementation of TR-BDF2,” Applied Numerical Mathematics 20, 1996.
バージョン履歴
R2006a より前に導入