このページの翻訳は最新ではありません。ここをクリックして、英語の最新版を参照してください。
denoiseImage
深層ニューラル ネットワークを使用したイメージのノイズ除去
説明
例
事前学習済みのニューラル ネットワークを使用したイメージ ノイズの除去
事前学習済みのノイズ除去畳み込みニューラル ネットワーク 'DnCNN'
を読み込みます。
net = denoisingNetwork('DnCNN');
グレースケール イメージをワークスペースに取得した後、ノイズを含むバージョンのイメージを作成します。
I = imread('cameraman.tif'); noisyI = imnoise(I,'gaussian',0,0.01);
2 つのイメージをモンタージュとして表示します。
montage({I,noisyI})
title('Original Image (Left) and Noisy Image (Right)')
ノイズを含むイメージからノイズを除去し、結果を表示します。
denoisedI = denoiseImage(noisyI,net);
imshow(denoisedI)
title('Denoised Image')
入力引数
A
— ノイズを含むイメージ
2 次元イメージ | 2 次元イメージのスタック
ノイズを含むイメージ。単一の 2 次元イメージまたは 2 次元イメージのスタックとして指定します。A
は次のいずれかです。
m 行 n 列サイズの 2 次元グレースケール イメージ。
m x n x c の 2 次元マルチチャネル イメージ。ここで、c はイメージ チャネルの数です。たとえば、c は RGB イメージの場合は 3 であり、赤外線チャネルを持つ RGB イメージなどの 4 チャネル イメージの場合は 4 です。
等サイズの 2 次元イメージのスタック。この場合、
A
のサイズは m x n x c x p です。ここで p はスタック内のイメージの数です。
データ型: single
| double
| uint8
| uint16
net
— ノイズ除去深層ニューラル ネットワーク
SeriesNetwork
オブジェクト
ノイズ除去深層ニューラル ネットワーク。SeriesNetwork
(Deep Learning Toolbox) オブジェクトとして指定します。ネットワークは、A
と同じチャネル形式でイメージを処理するように学習させる必要があります。
出力引数
バージョン履歴
MATLAB コマンド
次の MATLAB コマンドに対応するリンクがクリックされました。
コマンドを MATLAB コマンド ウィンドウに入力して実行してください。Web ブラウザーは MATLAB コマンドをサポートしていません。
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list:
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)