このページの翻訳は最新ではありません。ここをクリックして、英語の最新版を参照してください。
ニューラル状態空間モデル
ニューラル ネットワークを使用して、システムの非線形状態空間実現を定義する関数を表します。
関数
createMLPNetwork | Create and initialize a Multi-Layer Perceptron (MPL) network to be used within a neural state-space system |
nssTrainingOptions | Create training options object for neural state-space systems |
nlssest | Estimate nonlinear state-space model using measured time-domain system data |
generateMATLABFunction | Generate MATLAB functions that evaluate the state and output functions of a neural state-space object, and their Jacobians |
idNeuralStateSpace/evaluate | Evaluate a neural state-space system for a given set of state and input values and return state derivative (or next state) and output values |
idNeuralStateSpace/linearize | Linearize a neural state-space model around an operating point |
sim | Simulate response of identified model |
オブジェクト
idNeuralStateSpace | Neural state-space model with identifiable network weights |
nssTrainingADAM | Adam training options object for neural state-space systems |
nssTrainingSGDM | SGDM training options object for neural state-space systems |
ブロック
Neural State-Space Model | Simulate neural state-space model in Simulink |
トピック
- About Identified Nonlinear Models
Dynamic models in System Identification Toolbox™ software are mathematical relationships between the inputs u(t) and outputs y(t) of a system. The model is dynamic because the output value at the current time depends on the input-output values at previous time instants. Therefore, dynamic models have memory of the past. You can use the input-output relationships to compute the current output from previous inputs and outputs. Dynamic models have states, where a state vector contains the information of the past.