メインコンテンツ

ニューラル状態空間モデル

ニューラル ネットワークを使用して、システムの非線形状態空間実現を定義する関数を表します。

ニューラル状態空間モデルは、非線形状態空間モデルの一種で、状態遷移関数と測定関数をニューラル ネットワークを使用してモデル化したものです。System Identification Toolbox™ ソフトウェアを使用して、それらのネットワークの重みとバイアスを識別できます。学習させたモデルを制御、推定、最適化、および低次元化モデリングに使用できます。

ライブ エディター タスク

ニューラル状態空間モデルの推定Estimate neural state-space model in the Live Editor (R2023b 以降)

関数

createMLPNetworkCreate and initialize a Multi-Layer Perceptron (MLP) network to be used within a neural state-space system (R2022b 以降)
setNetworkAssign dlnetwork object as the state or output function of a neural state-space model (R2024b 以降)
nssTrainingOptionsCreate training options object for neural state-space systems (R2022b 以降)
nlssestEstimate nonlinear state-space model using measured time-domain system data (R2022b 以降)
generateMATLABFunctionGenerate MATLAB functions that evaluate the state and output functions, and their Jacobians, of a nonlinear grey-box or neural state-space model (R2022b 以降)
idNeuralStateSpace/evaluateEvaluate a neural state-space system for a given set of state and input values and return state derivative (or next state) and output values (R2022b 以降)
idNeuralStateSpace/linearizeLinearize a neural state-space model around an operating point (R2022b 以降)
sim同定されたモデルの応答のシミュレーション

オブジェクト

idNeuralStateSpaceNeural state-space model with identifiable network weights (R2022b 以降)
nssTrainingADAMAdam training options object for neural state-space systems (R2022b 以降)
nssTrainingSGDMSGDM training options object for neural state-space systems (R2022b 以降)
nssTrainingRMSPropRMSProp training options object for neural state-space systems (R2024b 以降)
nssTrainingLBFGSL-BFGS training options object for neural state-space systems (R2024b 以降)

ブロック

Neural State-Space ModelSimulate neural state-space model in Simulink (R2022b 以降)

トピック

  • What Are Neural State-Space Models?

    Understand the structure of a neural state-space model.

  • Neural State-Space Model of SI Engine Torque Dynamics

    This example describes reduced order modeling (ROM) of the nonlinear torque dynamics of a spark-ignition (SI) engine using a neural state-space model. The identified model can be used for hardware-in-the-loop (HIL) testing, powertrain control, diagnostics, and training algorithm design. For example, you can use the model for after-treatment control and diagnostic algorithm development. For more information on neural state-space models, see Neural State-Space Models.

  • Neural State-Space Model of Simple Pendulum System

    This example shows how to design and train a deep neural network that approximates a nonlinear state-space system in continuous time.

  • Augment Known Linear Model with Flexible Nonlinear Functions

    This example demonstrates a method to improve the normalized root mean-squared error (NRMSE) fit score of an existing state-space model using a neural state-space model.

  • Reduced Order Modeling of a Nonlinear Dynamical System Using Neural State-Space Model with Autoencoder

    This example shows reduced order modeling of a nonlinear dynamical system using a neural state-space (NSS) modeling technique. The nonlinear system used to describe the approach is a cascade of nonlinear mass-spring-damper (MSD) systems. The development of the reduced order model hinges on training a neural network with three parts:

  • Reduced Order Modeling of Electric Vehicle Battery System Using Neural State-Space Model

    This example shows a reduced order modeling (ROM) workflow, where you use deep learning to obtain a low-order nonlinear state-space model that serves as a surrogate for a high-fidelity battery model. The low-order model takes the current (charge or discharge) and state of charge (SOC) as inputs and predicts voltage and temperature of an electric vehicle (EV) battery module while the battery is being cooled by an edge-cooled plate with a coolant at a constant flow rate. You train the low-order model and deploy it in Simulink® to compare it against the high-fidelity model.