mse
平均二乗正規化誤差性能関数
説明
は、ニューラル ネットワーク perf = mse(net,t,y,ew)net、ターゲットの行列または cell 配列 t、出力の行列または cell 配列 y、および誤差の重み ew を取り、平均二乗誤差を返します。
この関数には、2 つのオプションのパラメーターがあります。これらのパラメーターは、net.trainFcn がこの関数に設定されたネットワークに関連付けられています。
'regularization'は、0 ~ 1 の任意の値に設定できます。正則化の値が大きくなると、重みとバイアスの二乗がより多く、誤差に対する性能の計算に含まれるようになります。既定値は 0 であり、正則化なしに対応しています。'normalization'は、'none'(既定値)、'standard'(誤差を -2 ~ 2 の範囲に正規化、出力およびターゲットの -1 ~ 1 の範囲への正規化に対応)、'percent'(誤差を -1 ~ 1 の範囲に正規化) に設定できます。この機能は、多要素出力があるネットワークの場合に役立ちます。これにより、ターゲット値の範囲が最も大きい出力要素の相対精度を優先するのではなく、ターゲット値の範囲がさまざまであっても出力要素の相対精度が等しく重要なものとして扱われるようになります。
mse と feedforwardnet または cascadeforwardnet を使用する標準的なネットワークを作成できます。mse を使用して学習が行われるようにカスタム ネットワークを準備するには、net.performFcn を 'mse' に設定します。これにより、net.performParam が既定のオプションのパラメーター値を持つ構造体に自動的に設定されます。
mse は、ネットワーク性能関数です。二乗誤差の平均に従ってネットワーク性能を測定します。
例
入力引数
出力引数
バージョン履歴
R2006a より前に導入